Advertisement for orthosearch.org.uk
Results 1 - 20 of 42
Results per page:

Aims. This study investigated vancomycin-microbubbles (Vm-MBs) and meropenem (Mp)-MBs with ultrasound-targeted microbubble destruction (UTMD) to disrupt biofilms and improve bactericidal efficiency, providing a new and promising strategy for the treatment of device-related infections (DRIs). Methods. A film hydration method was used to prepare Vm-MBs and Mp-MBs and examine their characterization. Biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli were treated with different groups. Biofilm biomass differences were determined by staining. Thickness and bacterial viability were observed with confocal laser scanning microscope (CLSM). Colony counts were determined by plate-counting. Scanning electron microscopy (SEM) observed bacterial morphology. Results. The Vm-MBs and Mp-MBs met the experimental requirements. The biofilm biomass in the Vm, Vm-MBs, UTMD, and Vm-MBs + UTMD groups was significantly lower than in the control group. MRSA and E. coli biofilms were most notably damaged in the Vm-MBs + UTMD group and Mp-MBs + UTMD group, respectively, with mean 21.55% (SD 0.08) and 19.73% (SD 1.25) remaining in the biofilm biomass. Vm-MBs + UTMD significantly reduced biofilm thickness and bacterial viability (p = 0.005 and p < 0.0001, respectively). Mp-MBs + UTMD could significantly decrease biofilm thickness and bacterial viability (allp < 0.001). Plate-counting method showed that the numbers of MRSA and E. coli bacterial colonies were significantly lower in the Vm-MBs + UTMD group and the Mp, Mp-MBs, UTMD, Mp-MBs + UTMD groups compared to the control group (p = 0.031). SEM showed that the morphology and structure of MRSA and E. coli were significantly damaged in the Vm-MBs + UTMD and Mp-MBs + UTMD groups. Conclusion. Vm-MBs or Mp-MBs combined with UTMD can effectively disrupt biofilms and protectively release antibiotics under ultrasound mediation, significantly reducing bacterial viability and improving the bactericidal effect of antibiotics. Cite this article: Bone Joint Res 2024;13(9):441–451


Bone & Joint Research
Vol. 13, Issue 3 | Pages 101 - 109
4 Mar 2024
Higashihira S Simpson SJ Morita A Suryavanshi JR Arnold CJ Natoli RM Greenfield EM

Aims. Biofilm infections are among the most challenging complications in orthopaedics, as bacteria within the biofilms are protected from the host immune system and many antibiotics. Halicin exhibits broad-spectrum activity against many planktonic bacteria, and previous studies have demonstrated that halicin is also effective against Staphylococcus aureus biofilms grown on polystyrene or polypropylene substrates. However, the effectiveness of many antibiotics can be substantially altered depending on which orthopaedically relevant substrates the biofilms grow. This study, therefore, evaluated the activity of halicin against less mature and more mature S. aureus biofilms grown on titanium alloy, cobalt-chrome, ultra-high molecular weight polyethylene (UHMWPE), devitalized muscle, or devitalized bone. Methods. S. aureus-Xen36 biofilms were grown on the various substrates for 24 hours or seven days. Biofilms were incubated with various concentrations of halicin or vancomycin and then allowed to recover without antibiotics. Minimal biofilm eradication concentrations (MBECs) were defined by CFU counting and resazurin reduction assays, and were compared with the planktonic minimal inhibitory concentrations (MICs). Results. Halicin continued to exert significantly (p < 0.01) more antibacterial activity against biofilms grown on all tested orthopaedically relevant substrates than vancomycin, an antibiotic known to be affected by biofilm maturity. For example, halicin MBECs against both less mature and more mature biofilms were ten-fold to 40-fold higher than its MIC. In contrast, vancomycin MBECs against the less mature biofilms were 50-fold to 200-fold higher than its MIC, and 100-fold to 400-fold higher against the more mature biofilms. Conclusion. Halicin is a promising antibiotic that should be tested in animal models of orthopaedic infection. Cite this article: Bone Joint Res 2024;13(3):101–109


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 27 - 27
24 Nov 2023
Chen B Chittò M Benavente LP Post V Moreno MG Zeiter S Trampuz A Wagemans J Lavigne R Onsea J Metsemakers W Moriarty F
Full Access

Aim. Bacteriophages are remerging as alternative and adjunctive therapy for fracture-related infection (FRI). However, current administration protocols involve prolonged retention of a percutaneous draining tube with potential risk of developing superinfection. In this study, we applied a cocktail of in vitro evolved biofilm-targeting phages for Methicillin-resistant Staphylococcus aureus (MRSA) in a hydrogel platform co-delivering vancomycin. In vitro synergy and antibiofilm activity was assessed and a subsequent in vivo study was performed in a mouse FRI model with MRSA. Method. Two evolved bacteriophages (MRSA-R14 and COL-R23) with improved antibiofilm activity against a clinical isolate (MRSA3) were tested in combination with vancomycin and a carboxymethylcellulose (CMC) hydrogel in vitro and in vivo. MRSA3 bacterial biofilms were formed on sterile 4 mm sintered porous glass beads at 37 °C for 24 h. Biofilms were exposed to i-phage cocktail (10. 7. PFU/ml), ii-vancomycin at concentrations of 0.5, 1, 10 and 100 times the MIC, or iii-combination of phage cocktail and vancomycin. Recovered biofilm cells, were quantified by colony counting. The stability and release profiles of phage cocktail and vancomycin in co-delivery hydrogel were assessed in vitro for 8 days and 72 hrs, respectively, and subsequently tested in the treatment of 5-day-old MRSA3 infection of a femoral plate osteotomy in mice. Results. In vitro: The cocktail of evolved phages (10. 7. PFU/ml, 1:1) combined with 0.5 MIC vancomycin achieved 99.72% reduction in MRSA3 biofilm in vitro compared to the growth control. This combination was stable in the co-delivery hydrogel over 8 days. The release profile showed that 57% of phages and 80% of vancomycin were released after 72hrs, which was identical to the performance for gels loaded with phage or antibiotic alone. In the in vivo study, the bacterial load from animals that received co-delivery hydrogel and systemic vancomycin was significantly reduced compared to controls, animals that received systemic vancomycin and animals that received co-delivery hydrogel alone (p<0.05). Conclusions. Our study demonstrates the potential of using evolved phages in combination with vancomycin and hydrogel delivery systems for the treatment of MRSA-related infections. Further research in this area may lead to the development of specific therapies for biofilm-related infection


Bone & Joint 360
Vol. 11, Issue 6 | Pages 45 - 47
1 Dec 2022

The December 2022 Research Roundup360 looks at: Halicin is effective against Staphylococcus aureus biofilms in vitro; Synovial fluid and serum neutrophil-to-lymphocyte ratio: useful in septic arthritis?; Transcutaneous oximetry and wound healing; Orthopaedic surgery causes gut microbiome dysbiosis and intestinal barrier dysfunction; Mortality in alcohol-related cirrhosis: a nationwide population-based cohort study; Self-reported resistance training is associated with better bone microarchitecture in vegan people.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 76 - 76
1 Dec 2021
Mannala G Rupp M Alagboso F Docheva D Alt V
Full Access

Aim

In vivo biofilm models play major role to study biofilm development, morphology, and regulatory molecules involve in biofilm. Due to ethical restrictions, the use mammalian models are replaced with other alternative models in basic research. Recently, we have developed insect infection model G. mellonella larvae to study implant associated biofilm infections. This model organism is easy to handle, cheap and ethical restriction free and could be used for the high through put screening of antimicrobial compounds to treat biofilm. To promote the use of this model in basic research we aimed to validate this based on the typical biofilm features such as less susceptible to the antibiotics, complexity of the biofilm structure and gene expression profile of biofilms.

Method

G. mellonella larvae are maintained at 30oC on artificial diet in an incubator. Titanium and Stainless steel K-wires were cut into small pieces with size of 4mm. After sterilization with 100% alcohol, these K-wires were pre-incubated in S. aureus bacterial suspension (5×106 CFU/ml) for 30 min, washed in PBS and implanted inside the larva after with help of scalpel. The larvae were incubated at 37oC for two day for the survival analysis. To analyze the less susceptibility of the biofilms towards antibiotics, the larvae were treated with gentamicin and compared survival with planktonic infection in G. mellonella. To reveal the complex structure of biofilm, the implants were removed and processed for the MALDI analysis. Whole genome-based transcriptome of biofilm was performed to explore the changes in transcriptional landscapes.


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 9 - 16
1 Jul 2021
Hadden WJ Ibrahim M Taha M Ure K Liu Y Paish ADM Holdsworth DW Abdelbary H

Aims

The aims of this study were to develop an in vivo model of periprosthetic joint infection (PJI) in cemented hip hemiarthroplasty, and to monitor infection and biofilm formation in real-time.

Methods

Sprague-Dawley rats underwent cemented hip hemiarthroplasty via the posterior approach with pre- and postoperative gait assessments. Infection with Staphylococcus aureus Xen36 was monitored with in vivo photoluminescent imaging in real-time. Pre- and postoperative gait analyses were performed and compared. Postmortem micro (m) CT was used to assess implant integration; field emission scanning electron microscopy (FE-SEM) was used to assess biofilm formation on prosthetic surfaces.


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 908 - 915
1 May 2021
O’Donnell JA Wu M Cochrane NH Belay E Myntti MF James GA Ryan SP Seyler TM

Aims

Periprosthetic joint infections (PJIs) are among the most devastating complications after joint arthroplasty. There is limited evidence on the efficacy of different antiseptic solutions on reducing biofilm burden. The purpose of the present study was to test the efficacy of different antiseptic solutions against clinically relevant microorganisms in biofilm.

Methods

We conducted an in vitro study examining the efficacy of several antiseptic solutions against clinically relevant microorganisms. We tested antiseptic irrigants against nascent (four-hour) and mature (three-day) single-species biofilm created in vitro using a drip-flow reactor model.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 14 - 14
1 Mar 2021
Tsang J Gallagher M Simpson H
Full Access

Abstract

OBJECTIVES

Staphylococcus aureus is one of the most common pathogens in orthopaedic biomaterial-associated infections. The transition of planktonic S. aureus to its biofilm phenotype is critical in the pathogenesis of biomaterial-associated infections and the development of antimicrobial tolerance, which leads to ineffective eradication in clinical practice. This study sought to elucidate the effect of non-lethal dispersion on antimicrobial tolerance in S. aureus biofilms.

METHODS

Using a methicillin-sensitive S. aureus reference strain, the effect of non-lethal dispersion on gentamicin tolerance, cellular activity, and the intracellular metabolome of biofilm-associated bacteria were examined. Gentamicin tolerance was estimated using the dissolvable bead biofilm assay. Cellular activity was estimated using the triphenyltetrazolium chloride assay. Metabolome analysis was performed using tandem high-performance liquid chromatography and mass spectrometry.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_5 | Pages 7 - 7
1 Mar 2021
Wang L Tkhilaishvili T Trampuz A Gonzalez-Moreno M
Full Access

Aim. Rifampicin plays an important role in the treatment of staphylococcal prosthetic joint infection, as rifampicin-containing combinations have shown a high efficacy against S. aureus biofilm infections. However, the emergence of rifampin-resistant strains is a feared complication and the use of rifampicin in those cases seems unwarranted. Therefore, we evaluated the activity of bacteriophage Sb1 in combination with different antibiotics against the biofilm of four rifampicin-resistant MRSA strains as alternative therapeutic approach. Method. Four rifampicin-resistant MRSA strains were used in this study. The MIC for all tested antibiotics was determined by Etest. Biofilms were formed on porous glass beads for 24h and exposed to Sb1 (10. 7. PFU/mL) for 24h followed by exposure to antibiotic for 24h. Viability of bacteria after antimicrobial treatment was detected by beads sonication and plating of the sonication fluids. The minimum biofilm eradication concentration (MBEC) was defined as the lowest concentration of antibiotic required to kill all cells resulting in the appearance of no colony after plating of the sonication fluid (detection limit <20 CFU/mL). The synergistic effects were observed when Sb1 combined with antibiotics used at least 2 log-reduction lower concentrations. Results. All strains were susceptible to the three antibiotics except for MRSA3, resistant to fosfomycin, according to the EUCAST breakpoints. All tested antibiotics presented high MBEC values (ranging from 64 to >1024 µg/mL) when tested alone against biofilm (Table 1). A sequential administration of Sb1 followed by vancomycin (VAN) showed no synergistic effect against any of the tested strains, whereas the combination with fosfomycin (FOF) showed synergism in 50% of the strains with improvement of the eradication activity. The combination of Sb1 with daptomycin (DAP) showed the highest synergistic effects in 100% of the strains, with a 2 or 3-log reduction in the MBEC. Conclusions. Sb1 bacteriophage in combination with daptomycin seems a promising alternative for the treatment of rifampicin-resistant MRSA biofilm infections. Table 1 (not included). Antimicrobial activities against rifampicin-resistant MRSA strains. For the table, please contact authors directly


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 522 - 529
1 Mar 2021
Nichol T Callaghan J Townsend R Stockley I Hatton PV Le Maitre C Smith TJ Akid R

Aims

The aim of this study was to develop a single-layer hybrid organic-inorganic sol-gel coating that is capable of a controlled antibiotic release for cementless hydroxyapatite (HA)-coated titanium orthopaedic prostheses.

Methods

Coatings containing gentamicin at a concentration of 1.25% weight/volume (wt/vol), similar to that found in commercially available antibiotic-loaded bone cement, were prepared and tested in the laboratory for: kinetics of antibiotic release; activity against planktonic and biofilm bacterial cultures; biocompatibility with cultured mammalian cells; and physical bonding to the material (n = 3 in all tests). The sol-gel coatings and controls were then tested in vivo in a small animal healing model (four materials tested; n = 6 per material), and applied to the surface of commercially pure HA-coated titanium rods.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 22 - 22
1 Jul 2020
Tsang J Gwynne P Gallagher M Simpson H
Full Access

Staphylococcus aureus is responsible for 60–70% infections of surgical implants and prostheses in Orthopaedic surgery, with cumulative treatment costs for all prosthetic joint infections estimated to be ∼ $1 billion per annum (UK and North America). Its ability to develop resistance or tolerance to a diverse range of antimicrobial compounds, threatens to halt routine elective implant surgery. One strategy to overcome this problem is to look beyond traditional antimicrobial drug therapies and investigate other treatment modalities. Biophysical modalities, such as ultrasound, are poorly explored, but preliminary work has shown potential benefit, especially when combined with existing antibiotics. Low intensity pulsed ultrasound is already licensed for clinical use in fracture management and thus could be translated quickly into a clinical treatment

Using a methicillin-sensitive S. aureus reference strain and the dissolvable bead assay, biofilms were challenged with gentamicin +/− low-intensity ultrasound (1.5MHz, 30mW/cm2, pulse duration 200µs/1KHz) for 180 minutes and 20 minutes, respectively. The primary outcome measures were colony-forming units/mL (CFU/mL) and the minimum biofilm eradication concentration (MBEC) of gentamicin. The mean number of S. aureus within control biofilms was 1.04 × 109 CFU/mL. Assessment of cellular metabolism was conducted using a liquid-chromatography-mass spectrometry, as well as a triphenyltetrazolium chloride assay coupled with spectrophotometry.

There was no clinically or statistically significant (p=0.531) reduction in viable S. aureus following ultrasound therapy alone. The MBEC of gentamicin for this S. aureus strain was 256 mg/L. The MBEC of gentamicin with the addition of ultrasound was reduced to 64mg/L. Metabolic activity of biofilm-associated S. aureus was increased by 25% following ultrasound therapy (p < 0 .0001), with identification of key biosynthetic pathways activated by non-lethal dispersal.

Low intensity pulsed ultrasound was associated with a four-fold reduction in the effective biofilm eradication concentration of gentamicin, bringing the MBEC of gentamicin to within clinically achievable concentrations. The mechanism of action was due to partial disruption of the extracellular matrix which led to an increase of nutrient availability and oxygen tension within the biofilm. This metabolic stimulus was responsible for the reversal of gentamicin tolerance in the biofilm-associated S. aureus.


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 3 - 10
1 Jul 2020
Sosa BR Niu Y Turajane K Staats K Suhardi V Carli A Fischetti V Bostrom M Yang X

Aims

Current treatments of prosthetic joint infection (PJI) are minimally effective against Staphylococcus aureus biofilm. A murine PJI model of debridement, antibiotics, and implant retention (DAIR) was used to test the hypothesis that PlySs2, a bacteriophage-derived lysin, can target S. aureus biofilm and address the unique challenges presented in this periprosthetic environment.

Methods

The ability of PlySs2 and vancomycin to kill biofilm and colony-forming units (CFUs) on orthopaedic implants were compared using in vitro models. An in vivo murine PJI model of DAIR was used to assess the efficacy of a combination of PlySs2 and vancomycin on periprosthetic bacterial load.


Bone & Joint Research
Vol. 9, Issue 5 | Pages 211 - 218
1 May 2020
Hashimoto A Miyamoto H Kobatake T Nakashima T Shobuike T Ueno M Murakami T Noda I Sonohata M Mawatari M

Aims. Biofilm formation is intrinsic to prosthetic joint infection (PJI). In the current study, we evaluated the effects of silver-containing hydroxyapatite (Ag-HA) coating and vancomycin (VCM) on methicillin-resistant Staphylococcus aureus (MRSA) biofilm formation. Methods. Pure titanium discs (Ti discs), Ti discs coated with HA (HA discs), and 3% Ag-HA discs developed using a thermal spraying were inoculated with MRSA suspensions containing a mean in vitro 4.3 (SD 0.8) x 10. 6. or 43.0 (SD 8.4) x 10. 5. colony-forming units (CFUs). Immediately after MRSA inoculation, sterile phosphate-buffered saline or VCM (20 µg/ml) was added, and the discs were incubated for 24 hours at 37°C. Viable cell counting, 3D confocal laser scanning microscopy with Airyscan, and scanning electron microscopy were then performed. HA discs and Ag HA discs were implanted subcutaneously in vivo in the dorsum of rats, and MRSA suspensions containing a mean in vivo 7.2 (SD 0.4) x 10. 6.   or 72.0 (SD 4.2) x 10. 5.   CFUs were inoculated on the discs. VCM was injected subcutaneously daily every 12 hours followed by viable cell counting. Results. Biofilms that formed on HA discs were thicker and larger than those on Ti discs, whereas those on Ag-HA discs were thinner and smaller than those on Ti discs. Viable bacterial counts in vivo revealed that Ag-HA combined with VCM was the most effective treatment. Conclusion. Ag-HA with VCM has a potential synergistic effect in reducing MRSA biofilm formation and can thus be useful for preventing and treating PJI. Cite this article:Bone Joint Res. 2020;9(5):211–218


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 91 - 91
1 Dec 2019
Scheper H Verhagen J de Visser A van der Wal R Wubbolts J Visser LG Boer MGJD Nibbering PH
Full Access

Aims

Prosthetic joint infection (PJI) remains the most severe complication of arthroplasty. Failure of intensive, long-term antibiotic treatment for PJI often requires removal of the implant. Antibiotic failure is thought to be caused by biofilm and persister formation. Novel anti-biofilm and anti-persister strategies are urgently needed. Here, we investigated the effects of several antimicrobial peptides on the bacteria within antibiotic-treated biofilms in an in vitro mature biofilm model on abiotic surfaces.

Methods

On polystyrene, a mature (7 day-old) methicillin-resistant Staphylococcus aureus (MRSA) biofilm was developed. Thereafter, bacteria in the biofilm were exposed to rifampicin and ciprofloxacin (both 10× >MIC) for three days. Surviving bacteria in the antibiotic-treated biofilm, presumed to include persisters, were exposed to increasing doses of the antimicrobial peptides SAAP-148, acyldepsipeptide 4 (ADEP4), LL-37 and pexiganan. SAAP-148 was further tested on antibiotic-treated mature biofilms on titanium/aluminium/niobium (TAN) discs and prosthetic joint liners.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 17 - 17
1 Dec 2019
Wang L Luca MD Tkhilaishvili T Gonzalez-Moreno M Trampuz A
Full Access

Aim. Ciprofloxacin is recommended as anti-biofilm therapy for gram-negative periprosthetic joint infection. With ciprofloxacin monotherapy, resistance in gram-negative bacteria was observed. Therefore, we evaluated in vitro synergistic activity of fosfomycin, ciprofloxacin and gentamicin combinations against biofilms formed by E. coli and P. aeruginosa strains. Method. E. coli ATCC 25922, P. aeruginosa ATCC 27853 and 15 clinical isolates were used for this study. MIC values were determined by Etest. Biofilms were formed on porous sintered glass beads for 24h and exposed to antibiotics for further 24h. Viability of bacteria on the glass beads after antibiotic treatment was detected by cfu counting of the sonicated beads. The minimum biofilm eradication concentration (MBEC) was defined as the lowest concentration of antibiotic required to kill biofilm cells. Synergistic activity against biofilm was evaluated by calculation of the fractional inhibitory concentration index (FICI). Results. Table 1 summarizes the antimicrobial susceptibility of planktonic (MIC), biofilm bacteria (MBEC) and synergism. Among 9 E. coli isolates, the synergism was observed in 78% of isolates treated with fosfomycin/gentamicin, 44% treated with gentamicin/ciprofloxacin and 22% treated with fosfomycin/ciprofloxacin. Among 8 P. aeruginosa isolates, the synergism was observed 75% of isolates treated with gentamicin/ciprofloxacin, 63% treated with fosfomycin/gentamicin and 50% treated with fosfomycin/ciprofloxacin. Conclusions. Based on our results, fosfomycin in combination with gentamicin seems to be a promising therapeutic approach against E. coli biofilm related infections. Combination of gentamicin with ciprofloxacin represent the most optimal treatment option for P. aeruginosa biofilm. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 25 - 25
1 Dec 2019
de Vor L Van Kessel K De Haas C Aerts P Viveen M Boel E Fluit A van Dijk B Vogely C van der Wal B van Strijp J Weinans H Rooijakkers S
Full Access

Aim. “Implant associated Staphylococcus aureus or S. epidermidis infections are often difficult to treat due to the formation of biofilms on prosthetic material. Biofilms are bacterial communities adhered to a surface with a self-made extracellular polymeric substance that surrounds resident bacteria. In contrast to planktonic bacteria, bacteria in a biofilm are in an adherent, dormant state and are insensitive to most antibiotics. In addition, bacteria in a biofilm are protected from phagocytic cells of the immune system. Therefore, complete surgical removal and replacement of the prosthetic implant is often necessary to treat this type of infections. Neutrophils play a crucial role in clearing bacterial pathogens. They recognize planktonic bacteria via immunoglobulin (Ig) and complement opsonisation. In this project, we aim to evaluate the role of IgG and complement in the recognition and clearance of staphylococcal biofilms by human neutrophils. Furthermore, we evaluate if monoclonal antibodies (mAbs) targeting biofilm structures can enhance recognition and clearance of staphylococcal biofilms by the human immune system.”. Method. “We produced a set of 20 recombinant mAbs specific for staphylococcal antigens. Using flow cytometry and ELISA-based methods we determined the binding of these mAbs to planktonic staphylococci and in vitro staphylococcal biofilms. Following incubation with IgG/IgM depleted human serum we determined whether mAbs can react with the human complement system after binding to biofilm. Confocal microscopy was used to visualize the location of antibody binding in the biofilm 3D structure.”. Results. “We show that mAbs directed against several staphylococcal surface targets such as wall teichoic acid (a glycopolymer on the S. aureus/S. epidermidis cell wall) and polymeric-N-acetyl-glucosamine (major constituent of the S. epidermidis biofilm extracellular matrix) bind biofilms in a dose-dependent manner. This interaction was specific since no binding was observed for control antibodies (recognizing the hapten DNP). Furthermore we show that these antibodies can penetrate the complete 3D structure of an in vitro biofilm. Products of complement activation via the classical pathway were detected upon incubation with human serum and the biofilm binding mAbs.”. Conclusions. “Having established that our mAbs can bind biofilms and induce complement opsonisation via C3b deposition, we will now study if we can engineer these antibodies to enhance complement deposition. A combination of enhanced complement and antibody opsonisation may improve recognition and clearance of biofilms by phagocytic immune cells. These mAbs could be used to boost the immune system to clear implant associated infections, without the need to replace the implant via invasive surgical procedures.”


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 23 - 23
1 Dec 2019
Poilvache H Ruiz-Sorribas A Rodriguez-Villalobos H Sakoulas G Cornu O van Bambeke F
Full Access

Aim

Irrigation is a major step during debridement surgery in the context of Prosthetic Joint Infections (PJI), but its effects on biofilms are poorly described.

The present study aims at evaluating the effect of PW alone or followed by antibiotics on MSSA and MRSA biofilms grown on Ti6Al4V coupons in-vitro.

Method

Strains: 1 reference (MSSA: ATCC25923; MRSA: ATCC33591) and 2 clinical MSSA and MRSA isolated from PJI.

Biofilm culture: Coupons were incubated for 24h at 37°C with bacteria (starting inoculum ∼6.6Log10CFU/mL in TGN [TSB + 1% glucose + 2% NaCl]), under shaking at 50rpm.

Treatment: Half of the coupons were irrigated with 50mL physiological serum from 5cm using a Stryker Interpulse; the coupons were then either analysed (ControlT0 and PWT0) or reincubated for 24h in TGN or TGN containing flucloxacillin (MSSA) or vancomycin (MRSA) at MIC or 20mg/L.

Analysis: Coupons were rinsed twice with PBS. Biomass was measured by crystal violet (CV) assay. CFUs were counted after recovering bacteria from coupons using sonication and TSA plating.


Bone & Joint 360
Vol. 8, Issue 4 | Pages 5 - 13
1 Aug 2019
Middleton R Khan T Alvand A


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_7 | Pages 7 - 7
1 May 2019
Turnbull G Ning E Faulds K Riches P Shu W Picard F Clarke J
Full Access

Antimicrobial resistance (AMR) is projected to result in 10 million deaths every year globally by 2050. Without urgent action, routine orthopaedic operations could become high risk and musculoskeletal infections incurable in a “post-antibiotic era.” However, current methods of studying AMR processes including bacterial biofilm formation are 2D in nature, and therefore unable to recapitulate the 3D processes within in vivo infection.

Within this study, 3D printing was applied for the first time alongside a custom-developed bioink to bioprint 3D bacterial biofilm constructs from clinically relevant species including Staphylococcus aureus (MSSA), Methicillin-resistant staphylococcus aureus (MRSA), Escherichia coli and Pseudomonas aeruginosa. Bacterial viability and biofilm formation in bioprinted constructs was excellent, with confocal laser scanning microscopy (CSLM) used to demonstrate biofilm production and maturation over 28 days. Bioprinted 3D MRSA and MSSA biofilm constructs had greater resistance to antimicrobials than corresponding two-dimensional (2D) cultures. Thicker 3D E.coli biofilms had greater resistance to tetracycline than thinner constructs over 7 days of treatment. Raman spectroscopy was also adapted in a novel approach to non-invasively diagnose 3D bioprinted biofilm constructs located within a joint replacement model.

In conclusion, mature bacterial biofilm constructs were reproducibly 3D bioprinted for the first time using clinically relevant bacteria. This methodology allows the study of antimicrobial biofilm penetration in 3D, and potentially aids future antimicrobial research, replicating joint infection more closely than current 2D culture models. Furthermore, by deploying Raman spectroscopy in a novel fashion, it was possible to diagnose 3D bioprinted biofilm infections within a joint replacement model.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 43 - 43
1 Jan 2019
Tsang J Gwynne P Gallagher M Simpson H
Full Access

Staphylococcus aureus is responsible for 60–70% infections of surgical implants and prostheses in Orthopaedic surgery, costing the NHS £120–200 million per annum. Its ability to develop tolerance to a diverse range of antimicrobial compounds, threatens to halt routine elective implant surgery. One strategy to overcome this problem is to look beyond traditional antimicrobial drug therapies and investigate other treatment modalities. Biophysical modalities, such as ultrasound, are poorly explores, but preliminary work has shown potential benefit, especially when combined with existing antibiotics.

Using a methicillin-sensitive S. aureus reference strain and the dissolvable bead assay, bacterial biofilms were challenged by gentamicin +/− low-intensity ultrasound (1.5MHz, 30W/cm2, pulse duration 200µs/1KHz) for 20 minutes. The outcome measures were colony-forming units/mL (CFU/mL) and the minimum biofilm eradication concentration (MBEC) of gentamicin.

The mean number of S. aureus within control biofilms was 1.04 × 109 CFU/mL. There was no clinically or statistically significant (p=0.531) reduction in viable S. aureus following ultrasound therapy alone. The MBEC of gentamicin for this S. aureus strain was 256 mg/L. The MBEC of gentamicin with the addition of ultrasound was 64mg/L.

Low intensity pulsed ultrasound was associated with a four-fold reduction in the effective biofilm eradication concentration of gentamicin; bringing the MBEC of gentamicin to within clinically achievable concentrations