Aim. Biomaterial-associated infections (BAI) present a formidable clinical challenge. Bioactive glasses (BG) have proven highly successful in diverse clinical applications, especially in dentistry and orthopaedics. In this study, we aimed to determine the effect of three commonly used BG composition and particle sizes on cell and bacterial attachment and growth. Our focus is on understanding the changes in pH and osmotic pressure in the surrounding environment during glass degradation. Method. First, three different melt-derived glasses were characterized by analyzing particle size and glass network structure using Raman and NMR. The different glasses were then tested in vitro by seeding 4x 10. 4. cells/well (SaOS Cell line) in a 48 well plate. After a pre-incubation period of 72 hours, the different BGs and particle sizes were added to the cells and the pH value, ion release and live/dead staining was measured every hour. The effect of BG against bacteria (S. epidermidis) was analyzed after 24 and 72 hours of treatment by using XTT viability assay and CFU counting by plating out the treated aliquot agar to estimate the viable bacteria cells. Results. All three BG compositions tested showed a significant increase in pH, which was highest in BG composition 45S5 with a value of 11 compared to the other BG compositions 10 and 9 in S53P4 and 13-93 respectively. This strong increase in the pH in all BG samples tested results in a strongly reduced cell viability rate of more than 75% compared to the untreated control and 6-fold reduction in bacterial viability compared to the untreated control. The live/ dead assay also showed an increased cell viability with increasing glass particle size (i. e smallest glass particle < 25% viable cell and largest glass particle> 65% viable cell). The ion release concentration over 50 h showed an increase in sodium ions to 0.25 mol/L, calcium to 0.003 mol/L and a decrease in phosphorus. Conclusions. These results show that the composition of the
Introduction. Various biomaterials and bone graft substitute technologies for use in osteomyelitis treatment are currently used in clinal practice. They vary in mode of action (with or without antibiotics) and clinical application (one-stage or two-stage surgery). This systematic review aims to compare the clinical evidence of different synthetic antimicrobial bone graft substitutes and antibiotic-loaded carriers in eradicating infection and clinical outcome in patients with chronic osteomyelitis. Methods. Systematic review according to PRISMA statement on publications 2002-2023. MESH terms: osteomyelitis and bone substitutes. FREE terms: chronic osteomyelitis, bone infection. A standardized data extraction form was be used to extract data from the included papers. Results. Publications with increased methodological quality and clinical evidence for biomaterials in osteomyelitis treatment were published in the last decades. High 85-95% eradication rates of osteomyelitis were observed for various resorbable Ca-P and/or Ca-S biomaterials combined with antibiotics and S53P4
Bioactive glasses (BGs) promote osteogenic differentiation of bone progenitor cells by releasing therapeutically active ions. The well-described 45S5-BG (in mol%: SiO2 46.13; P2O5 2.60; CaO 26.91; Na2O 24.35) was supplemented with CaF2 and NaF being added to the batch at nominal 5 (F5-BG) and 25 mol% (F25-BG), respectively. While the effect on physical and chemical properties has already been characterized, the biological properties require further studies. This study investigates the effects of fluoride-supplemented BGs on the osteogenic and angiogenic properties of human bone marrow mesenchymal stromal cells (BMSCs) in vitro. BMSCs were co-cultured with melt-derived 45S5-BG, F5-BG, or F25-BG in ascending concentrations (1, 2 and 3 mg/ml). At 7 days, cell number was determined by 4,6-diamidine-2-phenylindole (DAPI) staining and cell viability by fluorescein diacetate (FDA) assay. The osteogenic potential of the BGs was evaluated through alkaline phosphatase (ALP) gene expression and activity, along with bone morphogenetic protein-2 (BMP2) gene expression and protein concentration. Vascular endothelial growth factor (VEGF) gene expression and protein concentration assessed angiogenic potential. As control, BMSCs were cultured without BG exposure.Introduction
Method
Introduction. Articular cartilage has a low self-regeneration capacity. Cartilage defects have to be treated to minimize the risk of the onset of osteoarthritis.
The regenerative capacity of hyaline cartilage is greatly limited. To prevent the onset of osteoarthritis, cartilage defects have to be properly treated. Cartilage, tissue engineered by mean of
The optimal treatment strategy for post-traumatic long bone non-unions is subject of an ongoing discussion. At the Maastricht University Medical Center (MUMC+) the induced membrane technique is used to treat post-traumatic long bone non-unions. This technique uses a multimodal treatment algorithm involving bone marrow aspirate concentrate (BMAC), the reamer-irrigator-aspirator (RIA) and P-15 bioactive peptide (iFactor, Cerapedics).
The standard of wide tumour-like resection for chronic osteomyelitis (COM) has been challenged recently by adequate debridement. This paper reviews the evolution of surgical debridement for long bone COM, and presents the outcome of adequate debridement in a tertiary bone infection unit. We analyzed the retrospective record review from 2014 to 2020 of patients with long bone COM. All were managed by multidisciplinary infection team (MDT) protocol. Adequate debridement was employed for all cases, and no case of wide resection was included.Aims
Methods
Aim. The rise of multidrug-resistant bacteria and the decreasing efficacy of antibiotic therapy in successfully treating biofilm-associated infections are prompting the exploration of alternative treatment options. This study investigates the efficacy of different
Our objective was to conduct a systematic review and meta-analysis, to establish whether differences arise in clinical outcomes between autologous and synthetic bone grafts in the operative management of tibial plateau fractures. A structured search of MEDLINE, EMBASE, the online archives of Bone & Joint Publishing, and CENTRAL databases from inception until 28 July 2021 was performed. Randomized, controlled, clinical trials that compared autologous and synthetic bone grafts in tibial plateau fractures were included. Preclinical studies, clinical studies in paediatric patients, pathological fractures, fracture nonunion, or chondral defects were excluded. Outcome data were assessed using the Risk of Bias 2 (ROB2) framework and synthesized in random-effect meta-analysis. The Preferred Reported Items for Systematic Review and Meta-Analyses guidance was followed throughout.Aims
Methods
Introduction and Objective. Bone is a tissue which continually regenerates and also having the ability to heal after injuries however, healing of large defects requires intensive surgical treatment. Bioactive glasses are unique materials that can be utilized in both bone and skin regeneration and repair. They are degradable in physiological fluids and have osteoconductive, osteoinductive and osteostimulative properties. Osteoinductive growth factors such as Bone Morphogenetic Proteins (BMP), Vascular Endothelial Growth Factor (VEGF), Epidermal Growth Factor (EGF), Transforming Growth Factor (TGF) are well known to stimulate new bone formation and regeneration. Unfortunately, the synthesis of these factors is not cost- effective and, the broad application of growth factors is limited by their poor stability in the scaffolds. Instead, it is wise to incorporate osteoinductive nanomaterials such as graphene nanoplatelets into the structures of synthetic scaffolds. In this study, borate-based 13-93B3
Introduction and Objective. Regeneration of cartilage injuries is greatly limited. Therefore, cartilage injuries are often the starting point for later osteoarthritis. In the past, various
Novel biomaterials are being developed and studied, intended to be applied as bone graft substitute materials. Typically, these materials are being tested in in vitro setups, where among others their cytotoxicity and alkaline phosphatase activity (as a marker for osteoblastic differentiation) are being evaluated. However, it has been reported that in vitro tests correlate poorly with in vivo results and therefore many promising biomaterials may not reach the clinic as a bone graft substitute product. One of the reasons for the poor correlation, may be the minimal complexity of the in vitro tests, as compared to the in vivo environment. Ex vivo models, mimicking the natural tissue environment whilst maintaining control of culture parameters, may be a promising alternative to assess biomaterials for bone formation. Assess the possibility of an ex vivo culture platform to test biomaterials on their potential to stimulate new bone formation. Osteochondral plugs (cylinders n=10, Ø 10 mm, height 15 mm) were drilled from fresh porcine knees, from the slaughterhouse. A bone defect (Ø 6 mm) was created and which was filled with a biomaterial graft (S53P4
Cartilage injuries often represent irreversible tissue damage because cartilage has only a low ability to regenerate. Thus, cartilage loss results in permanent damage, which can become the starting point for osteoarthritis. In the past,
Despite the increasing availability of bone grafting materials, the regeneration of large bone defects remains a challenge. Especially infection prevention while fostering regeneration is a crucial issue. Therefore, loading of grafting material with antibiotics for direct delivery to the site of need is desired. This study evaluates the concept of local delivery using in vitro and in vivo investigations. We aim at verifying safety and reliability of a perioperative enrichment procedure of demineralized bone matrix (DBM) with gentamicin. DBM (DBMputty, DIZG, Germany) was mixed with antibiotic using a syringe with an integrated mixing propeller (Medmix Systems, Switzerland). Gentamicin, as powder or solution, was mixed with DBM at different concentrations (25 −100 mg/g DBM), release and cytotoxicity was analyzed. For in vivo analysis, sterile drill hole defects (diameter: 6 mm, depth: 15 mm) were created in diaphyseal and metaphyseal bones of sheep (Pobloth et al. 2016). Defects (6 – 8 per group and time point) were filled with DBM or DBM enriched with gentamicin (50 mg/g DBM) or left untreated. After three and nine weeks, defect regeneration was analyzed by µCT and histology. The release experiments revealed a burst release of gentamicin from DBM independent of the used amount, the sampling strategy, or the formulation (powder or solution). Gentamicin was almost completely released after three days in all set-ups. Eluates showed an antimicrobial activity against S. aureus over at least three days. Eluates had no negative effect on viability and alkaline phosphatase activity of osteoblast-like cells (partially published Bormann et al. 2014). µCT and histology of the drill hole defects revealed a reduced bone formation with gentamicin loaded DBM. After nine weeks significantly less mineralized tissue was detectable in metaphyseal defects of the gentamicin group. Histological evaluation revealed new bone formation starting at the edges of the drill holes and growing into the center over time. The amount of DBM decreased over time due to the active removal by osteoclasts while osteoblasts formed new bone. Using this mixing procedure, loading of DBM was fast, reliable and possible during surgical setting. In vitro experiments revealed a burst and almost complete release after three days, antimicrobial activity and good biocompatibility of the eluates. Gentamicin/DBM concentration was in the range of clinically used antibiotic-loaded-cement for prophylaxis and treatment in joint replacement (Jiranek et al. 2006). The delayed healing seen in vivo was unexpected due to the good biocompatibility found in vitro. A reduced healing was also seen in spinal fusion where DBM was mixed with vancomycin (Shields et al. 2017), whereas DBM with gentamicin or DBM/
In the 1990s, a bioactive bone cement (BABC) containing apatite-wollastonite glass-ceramic (AW-GC) powder and bisphenol-a-glycidyl methacrylate resin was developed at our hospital. In 1996, we used BABC to fix the acetabular component in primary total hip arthroplasty (THA) in 20 patients as part of a clinical trial. The purpose of this study was to investigate the long-term results of primary THA using BABC. A total of 20 patients (three men and 17 women) with a mean age of 57.4 years (40 to 71), a mean body weight of 52.3 kg (39 to 64), and a mean body mass index (BMI) of 23.0 kg/m2 (19.8 to 28.6) were evaluated clinically and radiologically. Survival analyses were undertaken, and wear analyses were carried out using a computer-aided method.Aims
Patients and Methods
Aim. We aimed to compare the in vitro antibacterial activity of
Post-surgical infections are still one of the most frequent adverse events in the prosthetic surgery. PMMA-based cements are widely employed in orthopaedic surgery as filler or prosthetic fixing device. The main problems associated with this material are poor bone integration and infection development. Aiming to avoid bacterial adhesion and to extend the longevity of implants, different solutions were proposed, both in terms of operative procedures and new materials development. Regarding the materials advancement, innovative PMMA-based composite bone cements, contemporaneously bioactive and antibacterial (without the use of antibiotics), were developed. The composites are based on a PMMA matrix containing a
Osteomyelitis is an infection of bone or bone marrow with a concomitant inflammation involving the bone marrow and the surrounding tissues. Chronic osteomyelitis is historically treated in a two-stage fashion with antibiotic-loaded polymethylmethacrylate as local antibacterial therapy. Two-stage surgeries are associated with high morbidity, long hospitalization and high treatment costs. Next to antibiotic releasing biomaterials, S53P4
The discussion will focus on new approaches to reduce bacterial adhesion on the surface of polymethylmethacrylate (PMMA) in contact with bone, comparing the clinical and engineering point of view. One possibility is to encourage and speed up direct interaction with the bone, for example by adding a bioactive phase in the cement (hydroxyapatite,
Osteoporosis is a worldwide spread, silent disease steadily increasing due to demographic shift; it results in bone loss and increased porosity that lead to an increase in bone fragility and to low-energy fractures. In such a contest, we worked on the development of 3D scaffolds engineered to mimic the features of human healthy bone. Healthy and osteoporotic bone microCT scans were obtained from tissues discarded during surgical interventions (Istituto Ortopedico Rizzoli-Italy). The obtained .STL file was used to 3D print a type I collagen solution to mimic bone matrix whereas mesoporous