Mesenchymal stem cells (MSCs) are usually cultured in a normoxic atmosphere (21%) in vitro, while the oxygen concentrations in human tissues and organs are 1% to 10% when the cells are transplanted in vivo. However, the impact of hypoxia on MSCs has not been deeply studied, especially its translational application. In the present study, we investigated the characterizations of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in hypoxic (1%) and normoxic (21%) atmospheres with a long-term culture from primary to 30 generations, respectively. The comparison between both atmospheres systematically analyzed the biological functions of MSCs, mainly including stemness maintenance, immune regulation, and resistance to chondrocyte apoptosis, and studied their joint function and anti-inflammatory effects in osteoarthritis (OA) rats constructed by collagenase II.Aims
Methods
In the treatment of basal thumb osteoarthritis (OA), intra-articular autologous fat transplantation has become of great interest within recent years as a minimally invasive and effective alternative to surgical intervention with regard to pain reduction. This study aims to assess its long-term effectiveness. Patients diagnosed with stage one to three OA received a single intra-articular autologous fat transplantation. Fat tissue was harvested from the abdomen and injected into the trapeziometacarpal (TMC) joint under radiological guidance, followed by one week of immobilization. Patients with a minimum three-year post-procedure period were assessed for pain level (numerical rating scale), quality of life (Mental Health Quotient (MHQ)), the abbreviated version of the Disabilities of Arm, Shoulder and Hand questionnaire (QuickDASH)), and grip and pinch strength, as well as their overall impression of the treatment. Wilcoxon tests compared data from pre-intervention, and at one and three years post-intervention.Aims
Methods
Introduction. PIEZO mechanoreceptors are increasingly recognized to play critical roles in fundamental physiological processes like proprioception, touch, or tendon biomechanics. However, their gating mechanisms and downstream signaling are still not completely understood, mainly due to the lack of effective tools to probe these processes. Here, we developed new tailor-made nanoswitches enabling wireless targeted actuation on PIEZO1 by combining molecular imprinting concepts with magnetic systems. Method. Two epitopes from functionally relevant domains of PIEZO1 were rationally selected in silico and used as templates for synthesizing molecularly imprinted nanoparticles (MINPs). Highly-responsive superparamagnetic zinc-doped iron oxide nanoparticles were incorporated into MINPs to grant them magnetic responsiveness. Endothelial cells (ECs) and
Introduction. A recent study to identify clinically meaningful benchmarks for gait improvement after total hip replacement (THA) has shown that the minimum clinically important improvement (MCII) in gait speed after THA is 0.32 m/sec. Currently, it remains to be investigated what preoperative factors link to suboptimal recovery of gait function after THA. This study aimed to identify preoperative lower-limb muscle predictors for gait speed improvement after THA for hip osteoarthritis. Method. This study enrolled 58 patients who underwent unilateral primary THA. Gait speed improvement was evaluated as the subtraction of preoperative speed from postoperative speed at 6 months after THA. Preoperative muscle composition of the glutei medius and minimus (Gmed+min) and the gluteus maximus (Gmax) was evaluated on a single axial computed tomography slice at the bottom end of the sacroiliac joint. Cross-sectional area ratio of individual composition to the total muscle was calculated. Result. The females (n=45) showed smaller total cross-sectional areas of the gluteal muscles than the males (n=13). Gmax in the females showed lower lean muscle mass area (LMM) and higher ratios of the intramuscular fat area and the intramuscular
Introduction. Endochondral ossification (EO) is the process of bone development via a cartilage template. It involves multiple stages, including chondrogenesis, mineralisation and angiogenesis. Importantly, how cartilage mineralisation affects angiogenesis during EO is not fully understood. Here we aimed to develop a new in vitro co-culture model to recapitulate and study the interaction between mineralised cartilage generated from human mesenchymal stromal cells (hMSCs) and microvascular networks. Method. Chondrogenic hMSC pellets were generated by culture with transforming growth factor (TGF)-β3. For mineralised pellets, β-glycerophosphate (BGP) was added from day 7 and TGF-β3 was withdrawn on day 14. Conditioned medium (CM) from the pellets was used to evaluate the effect on human umbilical vein endothelial cells (HUVECs) in migration, proliferation and tube formation assays. To perform direct co-cultures, pellets were embedded in fibrin hydrogels containing vessel-forming cells (HUVECs,
Aims. This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously. Methods. Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes. Results. WGCNA revealed critical gene modules for OB and OP, identifying the Toll-like receptor (TLR) signalling pathway as a common factor. TLR2 was the most significant gene, with a pronounced expression in macrophages. Elevated TLR2 expression correlated with increased
The influence of metabolic syndrome (MetS) on the outcome after hip and knee arthroplasty is debated. We aimed to investigate the change in patient-reported outcome measure (PROM) scores after hip and knee arthroplasty, comparing patients with and without MetS. From 1 May 2017 to 30 November 2019, a prospective cohort of 2,586 patients undergoing elective unilateral hip and knee arthroplasty was established in Denmark. Data from national registries and a local database were used to determine the presence of MetS. Patients’ scores on Oxford Hip Score (OHS) or Oxford Knee Score (OKS), EuroQol five-dimension five-level questionnaire (EQ-5D-5L), University of California, Los Angeles (UCLA) Activity Scale, and Forgotten Joint Score (FJS) at baseline, three, 12, and 24 months after surgery were collected. Primary outcome was the difference between groups from baseline to 12 months in OHS and OKS. Secondary outcomes were scores of OHS and OKS at three and 24 months and EQ-5D-5L, UCLA Activity Scale, and FJS at three, 12, and 24 months after surgery. Generalized linear mixed model was applied, adjusting for age, sex, Charlson Comorbidity Index, and smoking to present marginal mean and associated 95% CIs.Aims
Methods
Rotator cuff tears are common in middle-aged and elderly patients. Despite advances in the surgical repair of rotator cuff tears, the rates of recurrent tear remain high. This may be due to the complexity of the tendons of the rotator cuff, which contributes to an inherently hostile healing environment. During the past 20 years, there has been an increased interest in the use of biologics to complement the healing environment in the shoulder, in order to improve rotator cuff healing and reduce the rate of recurrent tears. The aim of this review is to provide a summary of the current evidence for the use of forms of biological augmentation when repairing rotator cuff tears. Cite this article:
The antidiabetic agent metformin inhibits fibrosis in various organs. This study aims to elucidate the effects of hyperglycaemia and metformin on knee joint capsule fibrosis in mice. Eight-week-old wild-type (WT) and type 2 diabetic (db/db) mice were divided into four groups without or with metformin treatment (WT met(-/+), Db met(-/+)). Mice received daily intraperitoneal administration of metformin and were killed at 12 and 14 weeks of age. Fibrosis morphology and its related genes and proteins were evaluated. Fibroblasts were extracted from the capsules of 14-week-old mice, and the expression of fibrosis-related genes in response to glucose and metformin was evaluated in vitro.Aims
Methods
Introduction. Autologous fat grafting has favourable potential as a regenerative strategy and is the current gold-standard to repair large contour defects, as needed in breast reconstruction after mastectomy and traumatic soft tissue reconstruction. Clinically, there is a limit on the volume of lipoaspirate which can be utilised to repair a soft-tissue defect. Surgical complications are the result of poor structural fidelity of lipoaspirate and graft resorption as a filling material and are hindered further by poor graft vascularisation. This study aims to develop injectable lipoaspirate-derived
Rotator cuff (RC) injuries are characterized by tendon rupture, muscle atrophy, retraction, and fatty infiltration, which increase injury severity and jeopardize adequate tendon repair. Epigenetic drugs, such as histone deacetylase inhibitors (HDACis), possess the capacity to redefine the molecular signature of cells, and they may have the potential to inhibit the transformation of the fibro-adipogenic progenitors (FAPs) within the skeletal muscle into adipocyte-like cells, concurrently enhancing the myogenic potential of the satellite cells. HDACis were added to FAPs and satellite cell cultures isolated from mice. The HDACi vorinostat was additionally administered into a RC injury animal model. Histological analysis was carried out on the isolated supra- and infraspinatus muscles to assess vorinostat anti-muscle degeneration potential.Aims
Methods
Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA). Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers.Aims
Methods
This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA. Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional annotation analyses were used to decipher the related categories of gene function. Single-sample gene set enrichment analysis was performed to analyze immune cell infiltration. Correlation analysis was used to explore the relationship among the hub genes and immune cells, as well as markers related to articular cartilage degradation and bone mineralization.Aims
Methods
Worldwide, tendon disorders are one of the main causes of disability that decrease the quality of life of individuals and represent a substantial economic burden on society. Currently, the main therapies used for tendon injuries are not able to restore tendon functionality, and due to tendons' hypovascular and hypocellular nature, they present a reduced healing capacity, which also limits the success of the available therapies. In order to discover new therapies, extracellular vesicles (EVs), key players in cell-cell communication, have been widely explored for tissue engineering and regenerative medicine applications. Thus, the aim of this study is to assess the role of EVs derived from platelets in stem cell tenogenic commitment using a bioengineered tendon in vitro model for potential use as tendon therapeutic agents. Biomimetic platelet-derived EVs were produced by freeze-thaw cycles of platelets and isolation at different centrifugation speed. To recreate the architecture of tendons, a 3D system consisting of electrospun anisotropic nanofiber scaffolds coated with collagen encapsulating human
Deriving autologous mesenchymal stem cells (MSCs) from
Tendon diseases are prevalent health concerns for which current therapies present limited success, in part due to the intrinsically low regenerative ability of tendons. Therefore, tissue engineering presents a potential to improve this outcome. Here, we hypothesize that a concurrent control over both biophysical and biochemical stimuli will boost the tenogenic commitment of stem cells, thus promoting regeneration. To achieve this, we combine molecularly imprinted nanoparticles (MINPs), which act as artificial amplifiers for endogenous growth factor (GF) activity, with bioinspired anisotropic hydrogels. 2. to manufacture 3D tenogenic constructs. MINPs were solid phase-imprinted using a TGF-β3 epitope as template and their affinity for the target was assessed by SPR and dot blot. Magnetically-responsive microfibers were produced by cryosectioning electrospun meshes containing iron oxide nanoparticles. The constructs were prepared by encapsulating
Degenerative disc disease, associated to low back pain, afflicts more than 50% of humans, and represents a major healthcare problem, especially for the pathology initiation. Current treatments range from conservative strategies to more invasive surgical techniques, such as disc removal and vertebral fusion. In the Intervertebral Disease (IVD) the nucleus pulposus (NP) degeneration is a key factor for the pathology initiation. Several tissue engineering approaches aiming to restore the appropriate NP cell (NPCs) and matrix content, were attempted by using adult stromal cells either from bone marrow or
Extensive bone defects, caused by severe trauma or resection of large bone tumors, are difficult to treat. Regenerative medicine, including stem cell transplantation, may provide a novel solution for these intractable problems and improve the quality of life in affected patients. Adipose-derived stromal/stem cells (ASCs) have been extensively studied as cell sources for regenerative medicine due to their excellent proliferative capacity and the ability to obtain a large number of cells with minimal donor morbidity. However, the osteogenic potential of ASCs is lower than that of bone marrow-derived stromal/stem cells. To address this disadvantage, our group has employed various methods to enhance osteogenic differentiation of ASCs, including factors such as bone morphogenetic protein or Vitamin D, coculture with bone marrow stem cells, VEGF transfection, and gene transfer of Runx-2 and osterix. Recently, we mined a marker that can predict the osteogenic potential of ASC clones and also investigated the usefulness of the molecule as the enhancer of osteogenic differentiation of ASCs as well as its mechanism of action. Through RNA-seq gene analysis, we discovered that GSTT1 was the most distinguished gene marker between highly osteogenic and poorly osteogenic ASC clones. Knockdown of GSTT1 in high osteogenic ASCs by siGSTT1 treatment reduced mineralized matrix formation while GSTT1 overexpression by GSTT1 transfection or GSTT1 recombinant protein treatment enhanced osteogenic differentiation of low osteogenic ASCs. Metabolomic analysis confirmed significant changes of metabolites related to bone differentiation in ASCs transfected with GSTT1. A high total antioxidant capacity, low levels of cellular reactive oxygen species and increased GSH/GSSG ratios were also detected in GSTT1- transfected ASCs. GSTT1 can be a useful marker to screen the highly osteogenic ASC clones and also a therapeutic factor to enhance the osteogenic differentiation of poorly osteogenic ASC clones.
Cell-based therapies offer a promising strategy to treat tendon injuries and diseases. Both mesenchymal stromal cells (MSCs) and pluripotent stem cells (PSCs) are good candidates for such applications due to their self-renewing and differentiation capacity. However, the translation of cell-based therapies from bench to bedside can be hindered by the use of animal-derived components in ancillary materials and by the lack of standardised media and protocols for in vitro tenogenic differentiation. To address this, we have optimized animal component-free (ACF) workflows for differentiating human MSCs and PSCs to tenocyte-like cells (TLCs) respectively. MSCs isolated from bone marrow (n = 3) or