Introduction. Patients (2.7M in EU) with positive cancer prognosis frequently develop metastases (≈1M) in their remaining lifetime. In 30-70% cases, metastases affect the spine, reducing the strength of the affected vertebrae. Fractures occur in ≈30% patients. Clinicians must choose between leaving the patient exposed to a high fracture risk (with dramatic consequences) and operating to stabilise the spine (exposing patients to unnecessary surgeries). Currently, surgeons rely on their sole experience. This often results in to under- or over-treatment. The standard-of-care are scoring systems (e.g. Spine Instability Neoplastic Score) based on medical images, with little consideration of the spine biomechanics, and of the structure of the vertebrae involved. Such scoring systems fail to provide clear indications in ≈60% patients. Method. The HEU-funded METASTRA project is implemented by biomechanicians, modellers, clinicians, experts in verification, validation, uncertainty quantification and certification from 15 partners across Europe. METASTRA aims to improve the stratification of patients with vertebral metastases evaluating their risk of fracture by developing dedicated reliable computational models based on Explainable Artificial Intelligence (AI) and on personalised Physiology-based biomechanical (VPH) models. Result. The METASTRA-AI model is expected to be able to stratify most patients with limited effort end cost, based on parameters extracted semi-automatically from the medical files and images. The cases which are not reliably stratified through the
Introduction. Shoulder arthroplasty (SA) has been performed with different types of implants, each requiring different replacement systems. However, data on previously utilized implant types are not always available before revision surgery, which is paramount to determining the appropriate equipment and procedure. Therefore, this meta-analysis aimed to evaluate the accuracy of the
Introduction. The recent introduction of Chatbots has provided an interactive medium to answer patient questions. The accuracy of responses with these programs in limb lengthening and reconstruction surgery has not previously been determined. Therefore, the purpose of this study was to assess the accuracy of answers from 3 free
Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care. Cite this article:
The purpose of this study was to develop a convolutional neural network (CNN) for fracture detection, classification, and identification of greater tuberosity displacement ≥ 1 cm, neck-shaft angle (NSA) ≤ 100°, shaft translation, and articular fracture involvement, on plain radiographs. The CNN was trained and tested on radiographs sourced from 11 hospitals in Australia and externally validated on radiographs from the Netherlands. Each radiograph was paired with corresponding CT scans to serve as the reference standard based on dual independent evaluation by trained researchers and attending orthopaedic surgeons. Presence of a fracture, classification (non- to minimally displaced; two-part, multipart, and glenohumeral dislocation), and four characteristics were determined on 2D and 3D CT scans and subsequently allocated to each series of radiographs. Fracture characteristics included greater tuberosity displacement ≥ 1 cm, NSA ≤ 100°, shaft translation (0% to < 75%, 75% to 95%, > 95%), and the extent of articular involvement (0% to < 15%, 15% to 35%, or > 35%).Aims
Methods
Aims. The aim of this study was to create artificial intelligence (AI) software with the purpose of providing a second opinion to physicians to support distal radius fracture (DRF) detection, and to compare the accuracy of fracture detection of physicians with and without software support. Methods. The dataset consisted of 26,121 anonymized anterior-posterior (AP) and lateral standard view radiographs of the wrist, with and without DRF. The convolutional neural network (CNN) model was trained to detect the presence of a DRF by comparing the radiographs containing a fracture to the inconspicuous ones. A total of 11 physicians (six surgeons in training and five hand surgeons) assessed 200 pairs of randomly selected digital radiographs of the wrist (AP and lateral) for the presence of a DRF. The same images were first evaluated without, and then with, the support of the CNN model, and the diagnostic accuracy of the two methods was compared. Results. At the time of the study, the CNN model showed an area under the receiver operating curve of 0.97.
Despite the vast quantities of published artificial intelligence (AI) algorithms that target trauma and orthopaedic applications, very few progress to inform clinical practice. One key reason for this is the lack of a clear pathway from development to deployment. In order to assist with this process, we have developed the Clinical Practice Integration of Artificial Intelligence (CPI-AI) framework – a five-stage approach to the clinical practice adoption of
The Bernese periacetabular osteotomy (PAO) is not indicated for growing hips as it crosses the triradiate cartilage in its posterior branch, and experimental work has shown this can induce substantial deformations, similar to posttraumatic dysplasia, which is observed after pelvis crash injuries in childhood. Upon examination, all injuries in the 19 cases of posttraumatic dysplasia described in literature plus 16 hips of our personal collection took place before the age of 6, which is striking as pelvic injuries in children increase with age. Based on this observation, we started to extend the PAO indication to severe dysplasias in children with open growth plate, initially aged 9 years and older. Following the positive results, it was extended further, our youngest patient being 5 years old. We retrospectively examined radiographic outcomes of 23 hips (20 patients), aged 10.6±1.8 years [range 5.0 – 13.2], operated by us in four centers. Pre- and 3-months postoperative, and the latest FUP radiograph at growth plate closure were measured. We evaluated the acetabular index (AI), lateral center-edge (LCE), ACM-value and compared them with reference values adjusted for age. The age at triradiate cartilage closure was compared with the non-operated side. The follow-up time was 5.4±3.7 years [0.8 - 12.7]. In 5 hips, growth plate closure was delayed by a few months. All angles significantly normalized after PAO (LCE: 14±8° → 38±11°,
Developmental dysplasia of the hip can cause pain and premature osteoarthritis. However, the risk factors and timing for disease progression in young adults are not fully defined. This study identified the incidence and risk factors for contralateral hip pain and surgery after periacetabular osteotomy (PAO) on an index dysplastic hip. Patients followed for 2+ years after unilateral PAO were grouped by eventual contralateral pain or no-pain, based on modified Harris Hip Score, and surgery or no-surgery. Univariate analysis tested group differences in demographics, radiographic measures, and range-of-motion. Kaplan-Meier survival analysis assessed pain development and contralateral hip surgery over time. Multivariate regression identified pain and surgery risk factors. Pain and surgery predictors were further analyzed in Dysplastic, Borderline, and Non-dysplastic subcategories, and in five-degree increments of lateral center edge angle (LCEA) and acetabular inclination (AI). 184 patients were followed for 4.6±1.6 years, during which 51% (93/184) reported hip pain and 33% (60/184) underwent contralateral surgery. Kaplan-Meier analysis predicted 5-year survivorship of 49% for pain development and 66% for contralateral surgery. Painful hips exhibited more severe dysplasia than no-pain hips (LCEA 16.5º vs 20.3º, p<0.001;
Aims. Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an
Hip arthroscopy has gained prominence as a primary surgical intervention for symptomatic femoroacetabular impingement (FAI). This study aimed to identify radiological features, and their combinations, that predict the outcome of hip arthroscopy for FAI. A prognostic cross-sectional cohort study was conducted involving patients from a single centre who underwent hip arthroscopy between January 2013 and April 2021. Radiological metrics measured on conventional radiographs and magnetic resonance arthrography were systematically assessed. The study analyzed the relationship between these metrics and complication rates, revision rates, and patient-reported outcomes.Aims
Methods
To examine whether natural language processing (NLP) using a clinically based large language model (LLM) could be used to predict patient selection for total hip or total knee arthroplasty (THA/TKA) from routinely available free-text radiology reports. Data pre-processing and analyses were conducted according to the Artificial intelligence to Revolutionize the patient Care pathway in Hip and knEe aRthroplastY (ARCHERY) project protocol. This included use of de-identified Scottish regional clinical data of patients referred for consideration of THA/TKA, held in a secure data environment designed for artificial intelligence (AI) inference. Only preoperative radiology reports were included. NLP algorithms were based on the freely available GatorTron model, a LLM trained on over 82 billion words of de-identified clinical text. Two inference tasks were performed: assessment after model-fine tuning (50 Epochs and three cycles of k-fold cross validation), and external validation.Aims
Methods
In this study, we aimed to visualize the spatial distribution characteristics of femoral head necrosis using a novel measurement method. We retrospectively collected CT imaging data of 108 hips with non-traumatic osteonecrosis of the femoral head from 76 consecutive patients (mean age 34.3 years (SD 8.1), 56.58% male (n = 43)) in two clinical centres. The femoral head was divided into 288 standard units (based on the orientation of units within the femoral head, designated as N[Superior], S[Inferior], E[Anterior], and W[Posterior]) using a new measurement system called the longitude and latitude division system (LLDS). A computer-aided design (CAD) measurement tool was also developed to visualize the measurement of the spatial location of necrotic lesions in CT images. Two orthopaedic surgeons independently performed measurements, and the results were used to draw 2D and 3D heat maps of spatial distribution of necrotic lesions in the femoral head, and for statistical analysis.Aims
Methods
The June 2024 Research Roundup360 looks at: Do the associations of daily steps with mortality and incident cardiovascular disease differ by sedentary time levels?; Large-scale assessment of ChatGPT in benign and malignant bone tumours imaging report diagnosis and its potential for clinical applications; Long-term effects of diffuse idiopathic skeletal hyperostosis on physical function: a longitudinal analysis; Effect of intramuscular fat in the thigh muscles on muscle architecture and physical performance in the middle-aged females with knee osteoarthritis; Preoperative package of care for osteoarthritis an opportunity not to be missed?; Superiority of kinematic alignment over mechanical alignment in total knee arthroplasty during medium- to long-term follow-up: a meta-analysis and trial sequential analysis.
The June 2024 Wrist & Hand Roundup360 looks at: One-year outcomes of the anatomical front and back reconstruction for scapholunate dissociation; Limited intercarpal fusion versus proximal row carpectomy in the treatment of SLAC or SNAC wrist: results after 3.5 years; Prognostic factors for clinical outcomes after arthroscopic treatment of traumatic central tears of the triangular fibrocartilage complex; The rate of nonunion in the MRI-detected occult scaphoid fracture: a multicentre cohort study; Does correction of carpal malalignment influence the union rate of scaphoid nonunion surgery?; Provision of a home-based video-assisted therapy programme in thumb carpometacarpal arthroplasty; Is replantation associated with better hand function after traumatic hand amputation than after revision amputation?; Diagnostic performance of artificial intelligence for detection of scaphoid and distal radius fractures: a systematic review.
The June 2024 Hip & Pelvis Roundup360 looks at: Machine learning did not outperform conventional competing risk modelling to predict revision arthroplasty; Unravelling the risks: incidence and reoperation rates for femoral fractures post-total hip arthroplasty; Spinal versus general anaesthesia for hip arthroscopy: a COVID-19 pandemic- and opioid epidemic-driven study; Development and validation of a deep-learning model to predict total hip arthroplasty on radiographs; Ambulatory centres lead in same-day hip and knee arthroplasty success; Exploring the impact of smokeless tobacco on total hip arthroplasty outcomes: a deeper dive into postoperative complications.