Advertisement for orthosearch.org.uk
Results 1 - 20 of 260
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 25 - 25
4 Apr 2023
Amirouche F Dolan M Mikhael M Bou Monsef J
Full Access

The pelvic girdle and spine vertebral column work as a long chain influenced by pelvic tilt. Spinal deformities or other musculoskeletal conditions may cause patients to compensate with excessive pelvic tilt, producing alterations in the degree of lumbar lordosis and subsequently causing pain. The objective of this study is to assess the effect of open and closed chain anterior or posterior pelvic tilt on lumbar spine kinematics using an in vitro cadaveric spine model. Three human cadaveric spines with intact pelvis were suspended with the skull fixed in a metal frame. Optotrak 3D motion system tracked real-time coordinates of pin markers on the lumbar spine. A force-torque digital gage applied consistent force to standardize the acetabular or sacral axis’ anterior and posterior pelvic tilt during simulated open and closed chain movements, respectively. In closed chain PPT, significant differences in relative intervertebral compression existed between L1/L2 [-2.54 mm] and L5/S1 [-11.84 mm], and between L3/L4 [-2.78 mm] and L5/S1 [-11.84 mm] [p <.05]. In closed chain APT, significant differences in relative intervertebral decompression existed between spinal levels L1/L2 [2.87mm] and L5/S1[24.48 mm] and between L3/L4 [2.94 mm] and L5/S1 [24.48 mm] [p <.05]. In open chain APT, significant differences in relative intervertebral decompression existed between spinal levels L4/L5 [1.53mm] and L5/S1 [25.14 mm] and between L2/L3 [1.68 mm] and L5/S1 [25.14 mm] [p<.05 for both]. Displacement during closed chain PPT was significantly greater than during open chain PPT, whereas APT showed no significant differences. In PPT, open chain pelvic tilts did not produce as much lumbar intervertebral displacement compared to closed chain. In contrast, APT saw no significant differences between open and closed chain. Additionally, results illustrate the increase in lumbar lordosis during APT and the loss of lordosis during PPT


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_4 | Pages 2 - 2
1 Apr 2022
Jenkinson M Peeters W Hutt J Witt J
Full Access

Acetabular retroversion is a recognised cause of hip impingement. Pelvic tilt influences acetabular orientation and is known to change in different functional positions. While previously reported in patients with developmental dysplasia of the hip, positional changes in pelvic tilt have not been studied in patients with acetabular retroversion. We retrospectively analysed supine and standing AP pelvic radiographs in 22 patients with preoperative radiographs and 47 with post-operative radiographs treated for symptomatic acetabular retroversion. Measurements were made for acetabular index (AI), lateral centre-edge angle (LCEA), crossover index, ischial spine sign, and posterior wall sign. The change in pelvic tilt angle was measured both by the Sacro-Femoral-Pubic (SFP) angle and the Pubic Symphysis to Sacro-iliac (PS-SI) Index. In the supine position, the mean calculated pelvic tilt angle (by SFP) was 1.05° which changed on standing to a pelvic tilt of 8.64°. A significant increase in posterior pelvic tilt angle from supine to standing of 7.59° (SFP angle) and 5.89° (PS –SI index) was calculated (p<0.001;paired t-test). There was a good correlation in pelvic tilt change between measurements using SFP angle and PS-SI index (rho .901 in pre-op group, rho .815 in post-op group). Signs of retroversion were significantly reduced in standing x-rays compared to supine: Crossover index (0.16 vs 0.38; p<0.001) crossover sign (19/28 vs 28/28 hips; p<0.001), ischial spine sign (10/28 hips vs 26/28 hips; p<0.001) and posterior wall sign (12/28 vs 24/28 hips; p<0.001). Posterior pelvic tilt increased from supine to standing in patients with symptomatic acetabular retroversion, in keeping with previous studies of pelvic tilt change in patients with hip dysplasia. The features of acetabular retroversion were much less evident on standing radiographs. The low pelvic tilt angle in the supine position is implicated in the appearance of acetabular retroversion in the supine position. Patients presenting with symptoms of hip impingement should be assessed by supine and standing pelvic radiographs so as not to miss signs of retroversion and to assist with optimising acetabular correction at the time of surgery


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 49 - 49
1 Nov 2021
Peeters W Jenkinson M Hutt J Witt J
Full Access

Acetabular retroversion is a recognised cause of hip impingement. Pelvic tilt influences acetabular orientation and is known to change in different functional positions. While previously reported in patients with developmental dysplasia of the hip, positional changes in pelvic tilt have not been studied in patients with acetabular retroversion. We retrospectively analysed supine and standing AP pelvic radiographs in 22 patients with preoperative radiographs and 47 with post-operative radiographs treated for symptomatic acetabular retroversion. Measurements were made for acetabular index (AI), lateral centre-edge angle (LCEA), crossover index, ischial spine sign, and posterior wall sign. The change in pelvic tilt angle was measured both by the Sacro-Femoral-Pubic (SFP) angle and the Pubic Symphysis to Sacro-iliac (PS-SI) Index. In the supine position, the mean calculated pelvic tilt angle (by SFP) was 1.05° which changed on standing to a pelvic tilt of 8.64°. A significant increase in posterior pelvic tilt angle from supine to standing of 7.59° (SFP angle) and 5.89° (PS –SI index) was calculated (p<0.001;paired t-test). The mean pelvic tilt change of 6.51° measured on post-operative Xrays was not significantly different (p=.650). There was a good correlation in pelvic tilt change between measurements using SFP angle and PS-SI index (rho .901 in pre-op group, rho .815 in post-op group). Signs of retroversion were significantly reduced in standing x-rays compared to supine: Crossover index (0.16 vs 0.38; p<0.001) crossover sign (19/28 vs 28/28 hips; p<0.001), ischial spine sign (10/28 hips vs 26/28 hips; p<0.001) and posterior wall sign (12/28 vs 24/28 hips; p<0.001). Posterior pelvic tilt increased from supine to standing in patients with symptomatic acetabular retroversion, in keeping with previous studies of pelvic tilt change in patients with hip dysplasia. The features of acetabular retroversion were much less evident on standing radiographs. The low pelvic tilt angle in the supine position is implicated in the appearance of acetabular retroversion in the supine position. Patients presenting with symptoms of hip impingement should be assessed by supine and standing pelvic radiographs so as not to miss signs of retroversion and to assist with optimising acetabular correction at the time of surgery


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_10 | Pages 11 - 11
1 Oct 2020
Wells JE Young WH Levy ET Fey NP Huo MH
Full Access

Purpose. Patients with acetabular dysplasia demonstrate altered biomechanics during gate and other activities. We hypothesized that these patients exhibit a compensatory increase in the anterior pelvic tilt during gait. Materials & Methods. Twelve patients were included in this prospective radiographic and gait analysis study prior to the PAO. All were women. The mean age was 27 years (+/− 8 yrs). Tonnis grade was zero in nine, and one in three hips. All patients performed multiple one-minute walking trials on the level, the incline, and the decline treadmill surfaces in an optical motion capture lab. Anterior pelvic tilt is reported in (+), while the posterior pelvic tilt is reported in (–) values. Results. Radiographic Data. : The mean alpha angle measured from the Dunn and the frog lateral images was 63.0º±17.4, and 54.7º±16.4, respectively. The mean LCEA was 14.9°±6.1, and the mean anterior center edge angle was 18.3°±8.9. the mean acetabular version at 1, 2, and 3 o'clock were 12.1°±11.6, 29.2°±9.9, and 23.3°±7.4, respectively. Intra-class correlation coefficient (ICC) for these measurements were 0.934, 0.895, and 0.971, respectively. The mean femoral anteversion, as measured on the 3D CT scan was 21.3°±16.1. The mean hip flexion range was 107.1°± 7.2. The mean pelvic tilt was 88.7 mm ± 14.4 using the PS-SI distance with an ICC of 0.998. Gait Data. : Baseline measurements were done in the standing position. On the leveled surface, 5 patients had anterior (+) while 7 had posterior (−) pelvic tilt. The mean posterior pelvic tilt was 1.0° with the range of −2.8° to +0.67°. On the inclined surface, all patients had posterior (−) pelvic tilt. The mean pelvic tilt was −4.9° with the range of −6.4° to −3.1°. On the declined surface, 8 patients had anterior (+) while 4 patients had posterior (−) pelvic tilt. The mean pelvic tilt was −0.39° with the range of −1.9° to +1.0°. The pelvic tilt was negatively correlated with the PS-SI distance on all three surfaces with the Spearman coefficients of −0.27, −0.04, and −0.18 on the 3 different surfaces, respectively. Conclusion. Our results demonstrated that the patients with hip dysplasia exhibit variable degrees of the pelvic tilt while walking on different surface inclinations. Weak negative correlation with the standing pelvic tilt measurements from the radiographs suggests that those patients with more anterior standing pelvic tilt tend to have greater compensatory posterior tilt during gait


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 57 - 57
1 Feb 2020
Muir J Vincent J Schipper J Gobin V Govindarajan M Fiaes K Vigdorchik J
Full Access

Anteroposterior (AP) radiographs remain the standard of care for pre- and post-operative imaging during total hip arthroplasty (THA), despite known limitation of plain films, including the inability to adequately account for distortion caused by variations in pelvic orientation. Of specific interest to THA surgeons are distortions associated with pelvic tilt, as unaccounted for tilt can significantly alter radiographic measurements of cup position. Several authors have proposed methods for correcting for pelvic tilt on radiographs but none have proven reliable in a THA population. The purpose of our study was to develop a method for correcting pelvic tilt on AP radiographs in patients undergoing primary or revision THA. CT scans from 20 patients/cadaver specimens (10 male, 10 female) were used to create 3D renderings, from which synthetic radiographs of each pelvis were generated (Figure 1). For each pelvis, 13 synthetic radiographs were generated, showing the pelvis at between −30° and 30° of pelvic tilt, in 5° increments. On each image, 8 unique parameters/distances were measured to determine the most appropriate parameters for calculation of pelvic tilt (Figure 2). The most reliable and accurate of these parameters was determined via regression analysis and used to create gender-specific nomograms from which pelvic tilt measurements could be calculated (Figure 3). The accuracy and reliability of the nomograms and correction method were subsequently validated using both synthetic radiographs (n=50) and stereoradiographic images (n=58). Of 8 parameters measured, the vertical distance between the superior margin of the pubic symphysis and the transischial line (PSTI) was determined to be the most reliable (r=−0.96, ICC=0.94). Mean tilt calculated from synthetic radiographs (0.6°±18.6°) correlated very strongly (r=0.96) with mean known tilt (0.5°±17.9°, p=0.98). Mean pelvic tilt calculated from AP EOS images (3.2°±9.9°) correlated strongly (r=0.77) with mean tilt measured from lateral EOS images (3.8°±8.2°, p=0.74). No gender differences were noted in mean tilt measurements in synthetic images (p=0.98) or EOS images (p=0.45). Our method of measuring PSTI and POD on AP images and applying these measurements to nomograms provides a validated and reliable method for estimating the degree of pelvic tilt on AP radiographs during THA. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 97 - 97
1 Apr 2019
Vigdorchik J Cizmic Z Novikov D Meere PA Schwarzkopf R Buckland A
Full Access

Introduction. A comprehensive understanding of pelvic orientation prior to total hip arthroplasty is necessary to allow proper cup positioning and mitigate the risks of complications associated with component malpositioning. Measurements using anteroposterior (AP) radiographs have been described as effective means of accurately predicting pelvic orientation. The purpose of our study was to describe the inter- and intra-observer reliability and predictive accuracy of predicting pelvic tilt using AP radiographs. Methods. Five fellowship-trained orthopaedic surgeons independently analyzed pelvic tilt, within 10 degrees, for 50 different AP pelvis radiographs. All surgeons were blinded to patient information, diagnosis, and correct measurements prior to analysis. Responses were then compared to correct measurements using sitting-standing AP and lateral stereoradiographs. Results. The average correct predictive value of pelvic tilt between all surgeons was 54%. The intra-observer accuracy of predicting pelvic tilt ranged from 48% to 64%. Discussion. Pelvic tilt cannot be accurately predicted using anteroposterior radiographs. Pre-operative evaluation of pelvic parameters requires multiple views for detailed assessment. Therefore, lateral radiographs are required for accurate prediction of pelvic tilt


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 52 - 52
4 Apr 2023
García-Rey E Saldaña L
Full Access

Pelvic tilt can vary over time due to aging and the possible appearance of sagittal spine disorders. Cup position in total hip arthroplasty (THA) can be influenced due to these changes. We assessed the evolution of pelvic tilt and cup position after THA and the possible appearance of complications for a minimum follow-up of ten years. 343 patients received a THA between 2006 and 2009. All were diagnosed with primary osteoarthritis and their mean age was 63.3 years (range, 56 to 80). 168 were women and 175 men. 250 had no significant lumbar pathology, 76 had significant lumbar pathology and 16 had lumbar fusion. Radiological analysis included sacro-femoral-pubic (SFP), acetabular abduction (AA) and anteversion cup (AV) angles. Measurements were done pre-operatively and at 6 weeks, and at five and ten years post-operatively. Three measurements were recorded and the mean obtained at all intervals. All radiographs were evaluated by the same author, who was not involved in the surgery. There were nine dislocations: six were solved with closed reduction, and three required cup revision. All the mean angles changed over time; the SFP angle from 59.2º to 60º (p=0.249), the AA angle from 44.5º to 46.8º (p=0.218), and the AV angle from 14.7º to 16.2º (p=0.002). The SFP angle was lower in older patients at all intervals (p<0.001). The SFP angle changed from 63.8 to 60.4º in women and from 59.4º to 59.3º in men, from 58.6º to 59.6º (p=0.012). The SFP angle changed from 62.7º to 60.9º in patients without lumbar pathology, from 58.6º to 57.4º in patients with lumbar pathology, and from 57.0º to 56.4º in patients with a lumbar fusion (p=0.919). The SFP cup angle was higher in patients without lumbar pathology than in the other groups (p<0.001), however, it changed more than in patients with lumbar pathology or fusion at ten years after THA (p=0.04). Posterior pelvic tilt changed with aging, influencing the cup position in patients after a THA. Changes due to lumbar pathology could influence the appearance of complications long-term


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 30 - 30
1 May 2016
Pierrepont J Walter L Miles B Marel E Baré J Solomon M McMahon S Shimmin A
Full Access

Introduction. The pelvis is not a static structure. It rotates in the sagittal plane depending upon the activity being performed. These dynamic changes in pelvic tilt have a substantial effect on the functional orientation of the acetabulum. The aim of this study was to quantify the changes in sagittal pelvic position between three functional postures. Methodology. Pre-operatively, 90 total hip replacement patients had their pelvic tilt measured in 3 functional positions – standing, supine and flexed seated (posture at “seat-off” from a standard chair), Fig 1. Lateral radiographs were used to define the pelvic tilt in the standing and flexed seated positions. Pelvic tilt was defined as the angle between a vertical reference line and the anterior pelvic plane (defined by the line joining both anterior superior iliac spines and the pubic symphysis). In the supine position pelvic tilt was defined as the angle between a horizontal reference line and the anterior pelvic plane. Supine pelvic tilt was measured from computed tomography, Fig 2. Results. The mean standing pelvic tilt was −2.1° ± 7.4°, with a range of −15.2° – 15.3°. Mean supine pelvic tilt was 4.1° ± 5.5°, with a range of −9.7° – 17.9°. Mean pelvic tilt in the flexed seated position was −1.8° ± 14.1°, with a range of −31.8° – 29.1°, Fig 3. The mean absolute change from supine to stand, and stand to flexed seated was 6.9° ± 4.1° and 11.9° ± 7.9° respectively. 86.6% of patients had a more anteriorly tilted pelvis when supine than standing. 52.2% of patients had a more anteriorly tilted pelvis when seated than standing. Conclusions. The position of the pelvis in the sagittal plane changes significantly between functional activities. The extent of change is specific to each patient. Planning and measurement of cup placement in the supine position can lead to large discrepancies in orientation during more functionally relevant postures. As a result of the functional changes in pelvic position, cup orientations during dislocation and edge-loading events are likely to be significantly different to that measured from standard CT and radiographs. Optimal cup orientation is likely patient-specific and requires an evaluation of functional pelvic dynamics to pre-operatively determine the target angles


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_6 | Pages 26 - 26
1 May 2019
King R Wang X Qureshi A Vepa A Rahman U Palit A Williams M Elliott M
Full Access

Background. Over 10% of total hip arthroplasty (THA) surgeries performed in England and Wales are revision procedures. 1. Malorientation of the acetabular component in THA may contribute to premature failure due to mechanisms such as edge loading and prosthetic impingement. It is known that the pelvis flexes and extends during activities of daily living (ADLs), and excessive pelvic motion can contribute to functional acetabular malorientation. Preoperative radiographs can be performed to measure changes in pelvic tilt during ADLs to identify high risk individuals and inform surgical decision making. However, radiographs require time-consuming radiation exposure, and are unable to provide truly dynamic 3-dimensional analysis. The purpose of this study was to develop and evaluate a motion capture method using inertial measurement units (IMUs). This would provide a rapid, non-invasive analysis of pelvic tilt which could be used to support surgical planning. Methods. Patients awaiting THA were fitted with a bespoke device consisting of a 3D-printed clamp which housed the IMU and positioned over the sacrum. A wide elastic belt was fitted around the patient's waist to keep the device in place. Movement data was transmitted wirelessly to a tablet computer. Pelvic tilt was measured in standing, flexed seated and step-up positions while undergoing X-rays with the IMU capturing the data in parallel. Statistical analysis included measures of correlation between the X-ray and IMU measurements. Results. Measurements from 30 patients indicated a moderate-strong correlation (R. 2. = .87; Figure 1) between IMU and radiological measures of AP pelvic tilt. Conclusions. A novel device has been developed that can suitably track pelvic movements. This could potentially be used to identify patients with large changes in pelvic tilt, and thereby inform surgical planning. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 115 - 115
23 Feb 2023
Chai Y Boudali A Farey J Walter W
Full Access

Pelvic tilt (PT) is always described as the pelvic orientation along the transverse axis, yet four PT definitions were established based on different radiographic landmarks: anterior pelvic plane (PT. a. ), the centres of femoral heads and sacral plate (PT. m. ), pelvic outlet (PT. h. ), and sacral slope (SS). These landmarks quantify a similar concept, yet understanding of their relationships is lacking. Some studies referred to the words “pelvic tilt” for horizontal comparisons, but their PT definitions might differ. There is a demand for understanding their correlations and differences for education and research purposes. This study recruited 105 sagittal pelvic radiographs (68 males and 37 females) from a single clinic awaiting their hip surgeries. Hip hardware and spine pathologies were examined for sub-group analysis. Two observers annotated four PTs in a gender-dependent manner and repeated it after six months. The linear regression model and intraclass correlation coefficient (ICC) were applied with a 95% significance interval. The SS showed significant gender differences and the lowest correlations to the other parameters in the male group (-0.3< r <0.2). The correlations of SS in scoliosis (n = 7) and hip implant (female, n = 18) groups were statistically different, yet the sample sizes were too small. PT. m. demonstrated very strong correlation to PT. h. (r > 0.9) under the linear model PT. m. = 0.951 × PT. h. - 68.284. The PT. m. and PT. h. are interchangeable under a simple linear regression model, which enables study comparisons between them. In the male group, SS is more of a personalised spinal landmark independent of the pelvic anatomy. Female patients with hip implant may have more static spinopelvic relationships following a certain pattern, yet a deeper study using a larger dataset is required. The understanding of different PTs improves anatomical education


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 94 - 94
1 Sep 2012
Murphy W Klingenstein G Murphy S Zheng G
Full Access

Introduction. The optimal goal for cup positioning in hip arthroplasty in individual patients is affected by many factors including surgical exposure, femoral anteversion, and pelvic tilt. Some navigation systems ignore pelvic tilt and are based strictly on the anterior pelvic plane while others incorporate pelvic tilt, as measured in the supine position on the operating table. Neither approach incorporates knowledge of preoperative spino-pelvic flexibility or predictions of the change in spino-pelvic attitude or flexibility following surgery. While prior studies have shown little change in pelvic tilt postoperatively, one recent study based on gait analysis, suggested that changes in pelvic tilt are not predictable. The current study aims to assess changes in pelvic tilt following surgery. Methods. 24 patients, 12 male and 12 female, underwent THA using CT-based navigation. Each patient had supine and standing AP pelvis radiographs both pre-operatively and at a minimum of 1 year post-operatively. Pelvic tilt on each radiograph was measured using a noncommercial two-dimensional/three-dimensional matching application. (HipMatch; Institut for Surgical Technology and Biomechanics, Bern, Switzerland). This software application uses a fully auto- mated registration procedure that can match the three- dimensional model of the preoperative CT with the projected pelvis on a postoperative radiograph. This method has been validated and for measurement of cup position for example showed a mean accuracy of 1.7° +/− 1.7° (rang-4.6° to 5.5°) in the coronal plane and 0.9° +/− 2.8° (rang-5.2° to 5.7°) in the sagittal plane compared with postoperative CT measurements. The software showed a good consistency with an intraclass correlation coefficient (ICC) for inclination of 0.96 (95% confidence interval [CI]: 0.93 to 0.98) and for anteversion of 0.95 (95% CI: 0.91 to 0.98). A good reproducibility and reliability for both inclination and anteversion was found with an ICC ranging from 0.95 to 0.99. No systematic errors in accuracy were detected with the Bland- Altman analysis. Using the HipMatch 2D/3D application, changes in pelvic tilt before and after surgery were assess in both the supine and standing positions. Results. Preoperatively, the mean standing pelvic tilt was .9 degrees (range 10.9 to −9.2) and the mean supine pelvic tilt was 3.7 degrees (range 11.8 to −7.7). Postoperatively, the mean standing pelvic tilt was 1.1 degrees (range 13.8 to −12.3) and the mean supine pelvic tilt was 5.9 degrees (−4.0 to 16.5). The maximum change following surgery in individual patients was −4.9 degrees standing and −8.5 degrees supine. Pre-operative supine pelvic tilt predicts post-operative supine pelvic tilt with an r. 2. of .67. Pre-operative standing pelvic tilt predicts post-operative standing pelvic tilt with an r. 2. of 0.91. Discussion. Overall, in both the standing and supine positions, pelvic tilt changed very little as a result of total hip arthroplasty in this sample of patients and pre-operative pelvic tilt is clearly predictive of post-operative pelvic tilt. Preoperative assessment of pelvic tilt, as measured either in the supine or standing position, may be useful information when determining optimal cup positioning goals for total hip arthroplasty. We recommend that both preoperative assessment of pelvic tilt and preoperative or intraoperative assessment of femoral anteversion should be considered when determining optimal acetabular component positioning


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 114 - 114
23 Feb 2023
Chai Y Boudali A Farey J Walter W
Full Access

Human error is usually evaluated using statistical descriptions during radiographic annotation. The technological advances popularized the “non-human” landmarking techniques, such as deep learning, in which the error is presented in a confidence format that is not comparable to that of the human method. The region-based landmark definition makes an arbitrary “ground truth” point impossible. The differences in patients’ anatomies, radiograph qualities, and scales make the horizontal comparison difficult. There is a demand to quantify the manual landmarking error in a probability format. Taking the measurement of pelvic tilt (PT) as an example, this study recruited 115 sagittal pelvic radiographs for the measurement of two PTs. We proposed a method to unify the scale of images that allows horizontal comparisons of landmarks and calculated the maximum possible error using a density vector. Traditional descriptive statistics were also applied. All measurements showed excellent reliabilities (intraclass correlation coefficients > 0.9). Eighty-four measurements (6.09%) were qualified as wrong landmarks that failed to label the correct locations. Directional bias (systematic error) was identified due to cognitive differences between observers. By removing wrong labels and rotated pelves, the analysis quantified the error density as a “good doctor” performance and found 6.77°-11.76° maximum PT disagreement with 95% data points. The landmarks with excellent reliability still have a chance (at least 6.09% in our case) of making wrong landmark decisions. Identifying skeletal contours is at least 24.64% more accurate than estimating landmark locations. The landmark at a clear skeletal contour is more likely to generate systematic errors. Due to landmark ambiguity, a very careful surgeon measuring PT could make a maximum 11.76° random difference in 95% of cases, serving as a “good doctor benchmark” to qualify good landmarking techniques


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 110 - 110
1 Mar 2017
Reitman R Pierrepont J McMahon S Walter L Shimmin A Kerzhner E
Full Access

Introduction. The pelvis is not a static structure. It rotates in the sagittal plane depending upon the activity being performed. These dynamic changes in pelvic tilt have a substantial effect on the functional orientation of the acetabulum. The aim of this study was to quantify the changes in sagittal pelvic position between three functional postures. Methodology. Pre-operatively, 1,517 total hip replacement patients had their pelvic tilt measured in 3 functional positions – standing, supine and flexed seated (point when patients initiate rising from a seated position). Lateral radiographs were used to define the pelvic tilt in the standing and flexed seated positions. Pelvic tilt was defined as the angle between a vertical reference line and the anterior pelvic plane (defined by the line joining both anterior superior iliac spines and the pubic symphysis). In the supine position pelvic tilt was defined as the angle between a horizontal reference line and the anterior pelvic plane. Supine pelvic tilt was measured from computed tomography. Results. The mean supine pelvic tilt was 4.2°, with a range of −20.5° to 24.5°. The mean standing pelvic tilt was −1.3°, with a range of −30.2° to 27.9°. Mean pelvic tilt in the flexed seated position was 0.6°, with a range of −42.0° to 41.3°. The mean absolute change from supine to stand, and supine to flexed seated was 6.0° (SD = 3.8°) and 10.7° (SD = 8.1°) respectively. 6% of patients rotated posteriorly by more than 13° from supine to stand, consequently putting them at risk of excessive functional anteversion in extension. 11% of patients rotated anteriorly by more than 13° from supine to seated, consequently retroverting their cup and putting them at risk in flexion. Therefore, 17% of patients had sagittal pelvic rotations that could lead to functional cup malorientation even with a supposedly ideal orientation of 40°/20°. Factoring in an intraoperative delivery error of ± 5° extends this risk to 51% of patients. Conclusions. The position of the pelvis in the sagittal plane changes significantly between functional activities. The extent of change is specific to each patient. 17% of patients had sagittal pelvic rotations that could lead to functional cup malorientation in functional flexion or extension, even with an apparently perfectly-orientated component. This number extended to 51% when an intra-operative delivery error of ± 5° was considered. Planning and measurement of cup placement in the supine position can lead to large discrepancies in orientation during more functionally relevant postures. Optimal cup orientation is likely patient-specific and requires an evaluation of functional pelvic dynamics to pre-operatively determine the target angles


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 126 - 126
1 Apr 2019
Elliott MT King R Wang X Qureshi A Vepa A Rahman U Palit A Williams MA
Full Access

Background. Over 10% of total hip arthroplasty (THA) surgeries performed in England and Wales are revision procedures. 1. Malorientation of the acetabular component in THA may contribute to premature failure. Yet with increasingly younger populations receiving THA surgery (through higher incidences of obesity) and longer life expectancy in general, the lifetime of an implant needs to increase to avoid a rapid increase in revision surgery in the future. The Evaluation of X-ray, Acetabular Guides and Computerised Tomography in THA (EXACT) trial is assessing the pelvic tilt of a patient by capturing x-rays from the patient in sitting, standing and step-up positions. It uses this information, along with a CT scan image, to deliver a personalised dynamic simulation that outputs an optimised position for the hip replacement. A clinical trial is currently in place to investigate how the new procedure improves patient outcomes. 2. . Our aim in this project was to assess whether accurate functional assessment of pelvic tilt could be further obtained using inertial measurement units (IMUs). This would provide a rapid, non-invasive triaging method such that only patients with high levels of tilt measured by the sensors would then receive the full assessment with x-rays. Methods. Recruited patients were fitted with a bespoke device consisting of a 3D-printed clamp which housed the IMU and fitted around the sacrum area. A wide elastic belt was fitted around the patient's waist to keep the device in place. Pelvic tilt is measured in a standing, flexed seated and step-up position while undergoing X-rays with the IMU capturing the data in parallel. Patients further completed another five repetitions of the movements with the IMU but without the x-ray to test repeatability of the measurements. Statistical analysis included measures of correlation between the X-ray and IMU measurements. Results. Data on 30 patients indicated a moderate-strong correlation (R. 2. =0.87) between IMU and radiological measures of pelvic tilt. Key message. A novel device has been developed that can suitably track pelvic movements to stratify patients into risk categories for post-operative dislocations


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 227 - 227
1 Jan 2013
Ul Islam S Dandachli W Witt J
Full Access

The position of the pelvis influences acetabular orientation. In particular, pelvic tilt in the sagittal plane may lead to inaccurate interpretation of plain pelvic radiographs. We therefore quantified the relationship between this pelvic tilt and acetabular orientation in native hips, and determined whether pelvic tilt affects femoral head cover. We analysed computed tomography scans of 93 hips (36 normal, 31 dysplastic, 26 with acetabular retroversion) and measured acetabular anteversion, inclination, and femoral head cover at pelvic tilt angles ranging from −20° to 20° in relation to the anterior pelvic plane using 5° increments. The effect of pelvic tilt on version was similar in the normal, dysplastic, and retroverted groups, with a drop in anteversion ranging from 2.5° to 5° for every 5° of forward tilt. There was a tendency for the inclination angle to decrease when the pelvis was tilted forward from a position of extension, and in normal hips, this produced a reduction in inclination of about 4° for every 8° of pelvic tilt; but once neutral pelvic tilt was reached, further forward rotation of the acetabulum had rather a small effect on the inclination angle. In normal and dysplastic hips pelvic tilt increased apparent femoral head cover; in the retroverted group the effect was less marked and tended to be negligible at higher tilt angles. Anterior cover increased with increasing forward tilt in all three groups of hips. Posterior cover, on the other hand, decreased by just 2% for the dysplastic hips, 3.5% for the normal hips, and 6% for the retroverted hips over the whole range of tilt from −20° to 20°. A greater understanding of the influence of pelvic tilt may allow improvements in the radiological diagnosis and surgical treatment of acetabular abnormalities, particularly in relation to acetabular reorientation procedures and femoroacetabular impingement


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 530 - 531
1 Oct 2010
Tannast M Fischer A Kakaty D Siebenrock K
Full Access

Pelvic tilt is a characteristic feature of the individual patients’ posture. Large differences in pelvic tilt are well known among individuals, over time or related to activity. To our knowledge, it is unknown how patients with developmental dysplasia of the hip (DDH) behave in terms of pelvic tilt. One can assume that patients with a dysplastic acetabulum might compensate for their acetabular under coverage by functionally increasing pelvic tilt. Theoretically, this effect should be reversible when an acetabular redirection osteotomy is performed. We therefore hypothesized that pelvic tilt decreases after periacetabular osteotomy. Sixty-three consecutive patients (67 hips) with documented PAO at our institution were analyzed. 39 patients (40 hips) were excluded because of indications than other DDH (e.g. acetabular retroversion), incomplete radiographic documentation or insufficient follow-up leaving us 24 patients (27 hips) for evaluation. Preoperative, intraoperative (under general anesthesia), and at least 1 year postoperative anteroposterior radiographs were analysed. All x-rays were done in a standardized manner. Two distances were measured: the vertical/horizontal distance between the mid point of the sacrococcygeal joint and the symphysis. The change of these distances allows exact determination of the pelvic tilt. A significant decrease for pelvic tilt was found between the preoperative x-ray and the one after at least one year. Pelvic tilt did not change significantly between the pre- and the intraoperative x-ray, and between the intra- and follow-up x-ray. Our findings support the hypothesis that patients with DDH try to compensate for their insufficient acetabular coverage by increasing the tilt of their pelvis. After PAO, i.e. after iatrogenically increasing acetabular coverage, the patients’ pelvis significantly turns back in to less lordosis


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 42 - 42
1 Oct 2014
Maratt J Esposito C McLawhorn A Carroll K Jerabek S Mayman D
Full Access

Sagittal pelvic tilt (PT) has been shown to effect the functional position of acetabular components in patients with total hip replacements (THR). This change in functional component position may have clinical implications including increased likelihood of wear or dislocation. Surgeons can use computer-assisted navigation intraoperatively to account for a patient's pelvic tilt and to adjust the position of the acetabular component. However, the accuracy of this technique has been questioned due to the concern that PT may change after THR. The purpose of this study was to measure the change in PT after THR, and to determine if preoperative clinical and radiographic parameters can predict PT changes after THR. 138 consecutive patients who underwent unilateral THR by one surgeon received standing bi-planar lumbar spine and lower extremity radiographs preoperatively and six weeks postoperatively. Patients with prior contralateral THR, conversion THR and instrumented lumbosacral fusions were excluded. PT and pelvic incidence (PI) were measured preoperatively for each patient, and PT was measured on the postoperative imaging. A negative value for PT indicated posterior pelvic tilt. Patient demographics were collected from the chart. Average age was 56.8±10.9 years, average BMI was 28.3±6.0 kg/m2, and 67 patients (48.6%) were female. Mean preoperative pelvic tilt was 0.6°±7.3° (range: −19.0° to 17.9°). We found greater than 10° of sagittal PT in 23 out of 138 (16.6%) patients in this sample. Mean post-operative pelvic tilt was 0.3°±7.4° (range: −18.4° to 15.0°). Mean change in pelvic tilt was −0.3°±3.6° (range: −9.6° to 13.5°). PT changed by less than 5° in 119 of 138 patients (86.2%). The mean difference in pre-operative and post-operative PT is not statistically significant (p = 0.395). Pre-operative PT was strongly correlated with post-operative PT (r2 = 0.88, p = 0.0001) (Figure 1). There was not a statistically significant relationship between PI and change in PT (r2 = −0.16, p = 0.06). In conclusion, based on the variability in pelvic tilt in this study population and the relatively small change in pelvic tilt following THA tilt-adjustment of the acetabular component position based on standing pre-operative imaging is likely to be of benefit in the majority of patients undergoing navigated THA. However, we have been unable to predict the relatively rare occurrence of a large change in pelvic tilt, which would confound tilt-adjusted component position


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_12 | Pages 37 - 37
1 Mar 2013
Ul Islam S Dandachli W Richards R Hall-Craggs M Witt J
Full Access

The position of the pelvis has been shown to influence acetabular orientation. However there have been no studies quantifying that effect on the native acetabulum. Our aims were to investigate whether it is possible to quantify the relationship between pelvic tilt and acetabular orientation in native hips, and whether pelvic tilt affects acetabular cover of the femoral head. Computerized tomography scans of 93 hips (36 normal, 31 dysplastic and 26 with acetabular retroversion) were analyzed. We used a CT technique that allows standardised three-dimensional (3D) analysis of acetabular inclination and anteversion and calculation of femoral head cover in relation to the anterior pelvic plane and at different degrees of forward and backward tilt. Acetabular anteversion, inclination and cover of the femoral head were measured at pelvic tilt angles ranging from −20° to 20° in relation to the anterior pelvic plane using 5° increments. The effect of pelvic tilt on version was similar in the normal, dysplastic and retroverted groups, with a drop in anteversion ranging from 2.5° to 5° for every 5° of forward tilt. The effect on inclination was less marked and varied among the three groups. Pelvic tilt increased femoral head cover in both normal and dysplastic hips. The effect was less marked, and tended to be negligible at higher positive tilt angles, in the retroverted group. This study has provided benchmark data on how pelvic tilt affects various acetabular parameters which in turn may be helpful in promoting greater understanding of acetabular abnormalities and how pelvic tilt affects the interpretation of pelvic radiographs


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 66 - 66
1 Mar 2013
McArthur B Grosso M Michaels B Mayman DJ
Full Access

Introduction. Traditional methods of component positioning in total hip replacement (THR) utilize mechanical alignment guides which estimate position relative to the plane of the operating room table. However, variations in pelvic tilt alter the relationship between the anatomic plane of the pelvis and that of the table such that components placed in optimal position relative the table may not land within the classic anatomic “safe zone” described by Lewinnek. It has been suggested that navigation software should incorporate adjustments for the degree of pelvic tilt. Current imageless navigation software has this capability, however there is a paucity of data regarding the accuracy of this technology. Purpose. We aimed to assess the accuracy of intra-operative pelvic tilt adjusted anteversion measurements as compared to unadjusted measurements. Methods. 6-week post-operative Anteroposterior Pelvis radiographs from 27 consecutive primary THR were measured utilizing Ein-Bild-Roentgen-Analyse (EBRA-Cup®) hip analysis software (Figure 1) and a cross-table lateral radiograph (Figure 2). Inclination and anteversion values were recorded and direction of version was confirmed by assessment of cross-table lateral images. Values were compared with intra-operative measurements obtained via BrainLab® imageless navigation. Pelvic tilt adjusted and unadjusted anteversion measurements were recorded. Mean measurement error and standard error of the mean were determined and Pearson correlation coefficients were calculated. Results. Navigated component inclination correlated with EBRA-Cup® derived inclination measurements (r = 0.4308, p = 0.02) with a mean error of 3.8°. Similarly, pelvic tilt adjusted anteversion correlated with EBRA-Cup® derived measurements (r = 0.65, p < 0.001). The mean difference between anteversion measurements was 3.58° and the standard error of the mean was 0.58°. 24 of 27 patients had <6° of difference between the two measurements. Post-operative component position correlated more closely with pelvic tilt adjusted anteversion than with unadjusted values (r = 0.3, p = 0.12). As expected, this was most pronounced in patients with greater than 10 degrees of pelvic tilt (mean error of 11.2° vs. 4.5°). Conclusions. Imageless navigation based anteversion measurements are more accurate when adjusted for pelvic tilt


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 110 - 110
1 Feb 2020
Samuel L Warren J Rabin J Acuna A Shuster A Patterson J Mont M Brooks P
Full Access

Background. Proper positioning of the acetabular component is critical for prevention of dislocation and excessive wear for total hip arthroplasty (THA) and hip resurfacing. Consideration of preoperative pelvic tilt (PT) may aid in acetabular component placement. The purpose of this study was to investigate how PT changes after hip resurfacing, via pre and post-operative radiographic analysis of anterior pelvic plane (APP), and whether radiographic analysis of the APP is a reproducible method for evaluating PT in resurfaced hips. Methods. A consecutive group of 228 patients from a single surgeon who had hip resurfacing were evaluated. We obtained x-rays from an institutional database for these patients who had their surgeries between January 1. st. , 2014 to December 31. st. , 2016. Pelvic tilt (PT) was measured by two observers before and after resurfacing utilizing a standardized radiographic technique. Correlation coefficients were calculated for PT measurements between observers, and pre- and post-surgery. Results. Mean preoperative PT was 0.7° (SD ± 6.6°) and 0.4° (SD ± 6.1°). Mean post-operative PT was −1.2° (SD ± 6.2°) and −1.2° (SD ± 6.0°). Correlations between pre and post-operative PT were R=.829 (p<.001) and R = .837 (p<.001). 80.6% to 82.5% of patients had variation <5°, 15.8% to 17.8% had variation between 5–10°, and 1.6 to1.8% had a variation >10°. Intraclass correlation coefficients between observers were R = .987 (95% CI, .963–.981; p<.001) preoperatively, and R=.985 (95 CI, .963–.981; p<.001) postoperatively. (See Fig 1). Conclusion. After hip resurfacing arthroplasty, the mean difference between preoperative and postoperative PT was less than 1°. These results suggest that near-native PT is maintained with consistency after hip resurfacing, a finding that is variable following THA. Since variations in PT affect functional acetabular position, these results support the use of pelvic tilt measurement in pre-operative planning for hip arthroplasty with a high degree of inter-observer reliability. For any figures or tables, please contact the authors directly