Purpose: Dislocation is a short-term complication frequently encountered after implantation of a total hip arthroplasty (THA). Different strategies can be used to limit the influence of technical, particularly surgical, factors. The position of the acetabular element is a key factor, particularly the anteversion angle and the abduction angle. The purpose of this work was to determine the precision, the reproducibility, and the ease of use of a new
Obtaining consistently an optimal cup orientation in THA is vital to obtain adequate head coverage and maximum impingement free range of motion and thus reduce the incidence of polyethylene wear, cup loosening, and dislocation rates associated with a limited range of motion. It is clear that THA instability, the most frequent cause of early failure, is a complex problem related to a wide range of causes. However cup orientation is one of the surgeon dependant potentially modifiable variables that continue to have an important influence due to the lack of reliable means of assuring an adequate orientation of the components, particularly the cup anteversion. Standard
Purpose: The increasing number of ACL reconstructions has led to the introduction of new techniques irrespective of the fact optimal tunnel angle placement has yet to be established. Improper tunnel angle placement is associated with a variety of complications including graft failure. The purpose of this retrospective study was to compare the reliability of tibial tunnel angles produced by two experienced surgeons using a free hand method or
Introduction. Acetabular component orientation is an important determinant of outcome following total hip arthroplasty (THA). Although surgeons aim to achieve optimal cup orientation, many studies demonstrate their inability to consistently achieve this. Factors that contribute are pelvic orientation and the surgeon's ability to correctly orient the cup at implantation. The goal of this study was to determine the accuracy with which surgeons can achieve cup orientation angles. Methods. In this in vitro study using a calibrated left and right sawbone hemipelvis model, participants (n=10) were asked to place a cup mounted on its introducer giving different targets. Measurements of cup orientation were made using a stereophotogrammetry protocol to measure radiographic inclination and operative anteversion (OA). A digital inclinometer was used to measure the intra-operative inclination (IOI) which is the angle of the cup introducer relative to the floor. First, the participant stated his or her preferred IOI and OA and positioned the cup accordingly. Second, the participant had to position the cup parallel to the anteversion of the transverse acetabular ligament (TAL). Third, the participant had to position the cup at IOI angles of 35°, 40° and 45°. Fourth, the participant used the
Extracellular matrix (ECM)
Restoration of proper alignment is one of the principle goals of TKA. Various methods are popular, including intramedullary (IM) and extramedullary (EM)
Background. The current orthopaedic literature demonstrates a clear relationship between acetabular component positioning, polyethylene wear and risk of dislocation following Total Hip Arthroplasty (THA). Problems with edge loading, stripe wear and squeaking are also associated with higher acetabular inclination angles, particularly in hard-on-hard bearing implants. The important parameters of acetabular component positioning are depth, height, version and inclination. Acetabular component depth, height and version can be controlled with intra-operative reference to the transverse acetabular ligament. Control of acetabular component inclination, particularly in the lateral decubitus position, is more difficult and remains a challenge for the Orthopaedic Surgeon. Lewinnek et al described a ‘safe zone’ of acetabular component orientation: Radiological acetabular inclination of 40 ± 10° and radiological anteversion of 15 ± 10°. Accurate implantation of the acetabular component within the ‘safe zone’ of radiological inclination is dependent on operative inclination, operative version and pelvic position. Traditionally during surgery, the acetabular component has been inserted with an operative inclination of 45°. This assumes that patient positioning is correct and does not take into account the impact of operative anteversion or patient malpositioning. However, precise patient positioning in order to orientate acetabular components using this method cannot always be relied upon. Hill et al demonstrated a mean 6.9° difference between photographically simulated radiological inclination and the post-operative radiological inclination. The most likely explanation was felt to be adduction of the uppermost hemipelvis in the lateral decubitus position. The study changed the practice of the senior author, with target operative inclination now 35° rather than 40° as before, aiming to achieve a post-operative radiological inclination of 42° ± 5°. Aim. To determine which of the following three techniques of acetabular component implantation most accurately obtains a desired operative inclination of 35 degrees:. Freehand. Modified (35°)
Minimally invasive total hip replacement surgery not only decreases the number of visual cues necessary for proper acetabular component position, the small incision makes it technically more difficult to use traditional
Introduction. Operative inclination (OI) is defined as the angle between the acetabular axis and the sagittal plane. With the patient in the true lateral decubitus position, this corresponds to the angle formed between the handle of the acetabular component inserter and the theatre floor intra-operatively. Patients/Materials & Methods. The primary study aim was to determine which method of acetabular component insertion most accurately allows the surgeon to obtain a target OI of 35o. 270 consecutive patients undergoing cementless THA were randomised to one of three possible methods for acetabular component implantation:. 1. Freehand,. 2. 35o
INTRODUCTION. Acetabular cup malpositioning has been implicated in instability and wear-related complications after total hip arthroplasty. Although computer navigation and robotic assistance have been shown to improve the precision of implant placement, most surgeons use mechanical and visual guides to place acetabular components. Authors have shown that, when using a bean bag positioner,
Introduction:. One of the primary goals in total knee arthroplasty (TKA) is restoration of the mechanical alignment. The accuracy of conventional
Introduction. In total hip arthroplasty (THA), a high radiographic inclination angle (RI) of the acetabular component has been linked to an increased dislocation rate, liner fracture, and increased wear. In contrast to version, we have more proven boundaries when it comes to a safe zone for angles of RI. Although intuitively it seems easier to achieve a target RI, most studies demonstrate a lack of accuracy and the trend towards a high RI with all surgical approaches when using a freehand technique or a
The disadvantages of sawing for precise bone cuts are well known: untrue cuts, heat and metal wear. The main limiting factors of available milling devices are the difficult handling and high costs, especially if the devices are based on a robot. Supported by clinical users and mechanical engineers a milling concept adopted from machining has been realised in order to overcome this limitations. The „All-in-One Milling-Tool“ achieves the same precision of a robot by a
Introduction: Navigation increases the precision and reproducibility of reconstruction in THR. It is important for the surgeon to be able to trust the reproducibility of the navigator and that navigated surgery should produce better results than those obtained by the surgeon by himself. The aim of this study is to determine the reproducibility and trustworthiness of a navigation system for acetabular reconstruction and to compare the precision of the navigator with that of the surgeon. Materials and methods: A total of 101 THRs were carried out in 99 patients using image-free navigation. The precision and reproducibility of the navigator were measured with 30 postoperative CT scans. The blind estimates of the surgeons for inclination and anteversion were compared to the values of the navigator; the navigator was as accurate as the surgeon in 101 cases. Results: The precision of the navigator for inclination was 4.4° with a reproducibility of 0.03 and for ante-version it was 4.1° with a reproducibility of 0.73. The precision of experienced surgeons for inclination was 11.5° and 12.3° for anteversion (less experienced surgeons had a precision for inclination of 13.1° and for anteversion of 13.9°). Conclusions: Computer accuracy for the real value of a CT scan is always within 5°. The estimations of the surgeons with
The disadvantages of sawing for precise bone cuts are well known: untrue cuts, heat and metal wear. The main limiting factors of available milling devices are the difficult handling and high costs, especially if the devices are based on a robot. Supported by clinical users and mechanical engineers a milling concept adopted from industrial machining has been realised in order to overcome this limitations. The “All-in-One Milling-Tool” achieves the same precision of a robot by a
Purpose: The purpose of this clinical trial was to investigate the accuracy of a novel method for computer-assisted distal radius osteotomy, in which computer-generated patient-specific plastic guides were used for intra-operative guidance. Our hypothesis was that these guides combine the accuracy and precision of computer-assisted techniques with the ease of use of
Introduction Malpositioning of cup and stem in total hip replacement can result in significant clinical problems such as dislocation, impingement, limited range of motion and increased polyethylene wear. The use of
Computer-assisted techniques are developed to optimise the positioning of acetabular cups in total hip replacement. However, ordinary guiding devices are still most commonly used. The aim of this study was to evaluate the accuracy when using a simple
The purpose of this research is to propose CT-free cup orientator using tilt sensors without expensive point tracking devices in total hip replacement. In the case of using a
Introduction: The correct position of the knee arthroplasty components is associated with a better result of the prosthesis. In the tibial component, both intramedullar and extramedullar instrumentations have been used for its fiability, but in the femoral component intramedullar guides are more precise than extramedullar ones. The use of the intramedullar guide for the femoral component is not always possible, because a significant deformity of the femoral shaft or when a intramedullar device has been implanted in the femur. We have studied the alineation of the components of computer assisted total knee arthroplasties in a group of patients with femoral deformities or implants. Material and methods: We have used the surgical navigator Stryker-Howmedica for the implantation of a knee arthroplasty in a group of 10 patients in which a endomedullar femoral guide can not be used for femoral shaft severe deformities (6 cases): Paget disease (1 case), previous femoral osteomyelitis (2 cases) or previous femoral fractures (3 cases), or a shaft device was in the femoral shaft (4 cases): long hip femoral stem (3 cases) or a femoral nail (1 case) . We have studied the alineation of femoral and tibial components with a whole-leg X-ray and Computer Tomography. Results: All the femoral and tibial components have been implanted in a good position (90 +/– 2 degrees in the A-P plane and a femorotibial axe 180 +/– 3 degrees. The alineation in the sagital and axial planes have been inside the desired values in all cases also. Discussion: It is generally accepted than intramedullary guides for the femoral component is the gold standard in arthroplasty of the knee. In the last years, the development of computer assisted systems has allowed to obtain femoral and tibial cuts referred to the mechanical axes of the bone, without using