Advertisement for orthosearch.org.uk
Results 1 - 20 of 59
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 24 - 24
1 Apr 2019
Hettich G Schierjott RA Schilling C Maas A Ramm H Bindernagel M Lamecker H Grupp TM
Full Access

Introduction. Acetabular bone defects are still challenging to quantify. Numerous classification schemes have been proposed to categorize the diverse kinds of defects. However, these classification schemes are mainly descriptive and hence it remains difficult to apply them in pre-clinical testing, implant development and pre-operative planning. By reconstructing the native situation of a defect pelvis using a Statistical Shape Model (SSM), a more quantitative analysis of the bone defects could be performed. The aim of this study is to develop such a SSM and to validate its accuracy using relevant clinical scenarios and parameters. Methods. An SSM was built on the basis of segmented 66 CT dataset of the pelvis showing no orthopedic pathology. By adjusting the SSM's so called modes of shape variation it is possible to synthetize new 3D pelvis shapes. By fitting the SSM to intact normal parts of an anatomical structure, missing or pathological regions can be extrapolated plausibly. The validity of the SSM was tested by a Leave-one-out study, whereby one pelvis at a time was removed from the 66 pelvises and was reconstructed using a SSM of the remaining 65 pelvises. The reconstruction accuracy was assessed by comparing each original pelvis with its reconstruction based on the root-mean-square (RMS) surface error and five clinical parameters (center of rotation, acetabulum diameter, inclination, anteversion, and volume). The influence of six different numbers of shape variation modes (reflecting the degrees of freedom of the SSM) and four different mask sizes (reflecting different clinical scenarios) was analyzed. Results. The Leave-one-out study showed that the reconstruction errors decreased when the number of shape variation modes included in the SSM increased from 0 to 20, but remained almost constant for higher numbers of shape variation modes. For the SSM with 20 shape variation modes, the RMS of the reconstruction error increased with increasing mask size, whereas the other parameters only increased from Mask_0 to Mask_1, but remained almost constant for Mask_1, Mask_2 and Mask_3. Median reconstruction errors for Mask_1, Mask_2, and Mask_3 were approximately 3 mm in Center of Rotation (CoR) position, 2 mm in Diameter, 3° in inclination and anteversion, as well as 5 ml in volume. Discussion. This is the first study analyzing and showing the feasibility of a quantitative analysis of acetabular bone defects using a SSM-based reconstruction method in the clinical scenario of a defect or implant in both acetabuli and incomplete CT-scans. Validation results showed acceptable reconstruction accuracy, also for clinical scenarios in which less healthy bone remains. Further studies could apply this method on a larger number of defect pelvises to obtain quantitative measures of acetabular bone defects


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 67 - 67
1 Feb 2017
Kim J Baek S Kim S
Full Access

Introduction. The mid- or long-term results of acetabular revision total hip arthroplasty (THA) in Korea are rare. The purpose of this study is to report the mid-term radiographic results (> 5 years) of acetabular revision THA with porous-coated cementless Trilogy. ®. cup (Zimmer, Warsaw, IN, USA). Materials and Methods. Between 1999 and 2010, 77 patients (79 hips) had underwent acetabular revision THA with Trilogy. ®. cup. Eight patients (8 hips) were excluded due to death before 5-year follow-up, and 22 patients (23 hips) were excluded due to less than 5-year follow-up or follow-up loss. Forty-seven patients (48 hips) were included in our study. The mean age was 57.9 years (range, 36 to 76 years) and the mean follow-up was 9.8 years (range 5.0 to 16.2 years). The causes of revision were aseptic loosening in 40 hips, and septic loosening in 8 hips, respectively. Both acetabular and femoral revisions were performed in 14 hips and isolated acetabular revision was done in 34 hips. Preoperetive acetabular bone defect according to Paprosky classification was; 1 in type I, 6 in IIA, 11 in IIB, 9 in IIC, 15 in IIIA, and 6 in IIIB. Results. Radiolucent lines less than 2mm were found in 2 hips; one in zone I, another in zone I, II, III. Four hips (1 in type IIC, 1 in IIIA and 2 in IIIB) showed cup migration greater than 5 mm accompanying change of position greater than 5 degrees. However, these patients did not complain pain and showed fixation by secondary stabilization. The Kaplan-Meier survivorship with aseptic loosening as the end point at 10 years was 92.6% (95% confidence interval [CI], 82.6 – 100) and at 15 years was 83.8 % (95% CI, 69.1 – 98.6), respectively. Non-recurrent dislocations occurred in 4 hips. There were no other complication such as sciatic nerve palsy, infection and deep vein thrombosis. Conclusion. Mid-term radiographic results (>5 years) of acetabular revision THA with porous-coated cementless Trilogy. ®. cup showed durable longevity. However, other options such as anti-protrusio cage or cup-cage construct should be considered in severe acetabular bone defect


The management of severe acetabular bone defects poses a complex challenge in revision hip arthroplasty. Although biological fixation materials are currently dominant, cage has played an important role in complex acetabular revision in the past decades, especially when a biological prosthesis is not available. The purpose of this study is to report the long-term clinical and radiographic results of Paprosky type Ⅲ acetabular bone defects revised with cage and morselized allografts. We retrospectively analyzed 45 patients who underwent revision hip arthroplasty with cage and morselized allografts between January 2007 and January 2019. Forty-three patients were followed up. There were 19 Paprosky type IIIA bone defect patients and 24 Paprosky type IIIB bone defect patients and 7 patients of the 24 were also with pelvic discontinuity. Clinical assessment included Harris Hip Score (HHS) and Short Form-12 (SF-12). Radiographic assessment included cage stability, allografts incorporation, and center of rotation. All patients were followed up with a mean follow-up of 10.6 years, HHS and SF-12 improved significantly at last follow-up in comparison to the preoperative. There were 2 re-revisions, one at 5 years after surgery, another at 13.6 years after surgery. Two patients had nonprogressive radiolucency in zone III and the junction of zone II and zone III at the bone implant interface. Allografts of 40 (93%) cases incorporated fully. The combination of cage and morselized allograft is an alternative option for acetabular revision with Paprosky type III bone defects with satisfactory long-term follow-up results


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 52 - 52
23 Feb 2023
Full Access

THA in patients with acetabular bone defects is associated with a high risk of dislocation. Dual mobility (DM) cups are known to prevent and treat chronic instability. The aim of this study was to evaluate the dislocation rate and survival of jumbo DM cups. This was a retrospective, continuous, multicenter study of all the cases of jumbo DM cup implantation between 2010 and 2017 in patients with acetabular bone loss (Paprosky 2A: 46%, 2B: 32%, 2C: 15% and 3A: 6%). The indications for implantation were revisions for aseptic loosening of the cup (n=45), aseptic loosening of the femoral stem (n=3), bipolar loosening (n=11), septic loosening (n=10), periprosthetic fracture (n=5), chronic dislocation (n=4), intraprosthetic dislocation (n=2), cup impingement (n=1), primary posttraumatic arthroplasty (n=8), and acetabular dysplasia (n=4). The jumbo cups used were COPTOS TH (SERF), which combines press-fit fixation with supplemental fixation (acetabular hook, two superior flanges with one to four screws, two acetabular pegs). A bone graft was added in 74 cases (80%). The clinical assessment consisted of the Harris hip score. The primary endpoint was surgical revision for aseptic acetabular loosening or the occurrence of a dislocation episode. In all, 93 patients were reviewed at a mean follow-up of 5.3 ± 2.3 years [0, 10]. As of the last follow-up, the acetabular cup had been changed in five cases: three due to aseptic loosening (3.2%) and two due to infection (2.1%). The survivorship free of aseptic loosening was 96.8%. Three patients (3%) suffered a dislocation. At the last follow-up visit, the mean HSS scores were 72.15, (p < 0.05). Use of a jumbo DM cup in cases of acetabular bone defects leads to satisfactory medium-term results with low dislocation and loosening rates


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 7 - 7
1 Feb 2020
Hettich G Schierjott R Graichen H Jansson V Rudert M Traina F Weber P Grupp T
Full Access

Introduction. Revision total hip arthroplasty is often associated with acetabular bone defects. In most cases, assessment of such defects is still qualitative and biased by subjective interpretations. Three-dimensional imaging techniques and novel anatomical reconstructions using statistical shape models (SSM) allow a more impartial and quantitative assessment of acetabular bone defects [1]. The objectives of this study are to define five clinically relevant parameters and to assess 50 acetabular bone defects in a quantitative way. Methods. Anonymized CT-data of 50 hemi-pelvises with acetabular bone defects were included in the study. The assessment was based on solid models of the defect pelvis (i.e. pelvis with bone defect) and its anatomical reconstruction (i.e. native pelvis without bone defect) (Fig.1A). Five clinically relevant parameters were defined: (1) Bone loss, defined by subtracting defect pelvis from native pelvis. (2) Bone formation, defined by subtracting native pelvis from defect pelvis. Bone formation represents bone structures, which were not present in the native pelvis (e.g. caused by remodeling processes around a migrated implant). (3) Ovality, defined by the length to width ratio of an ellipse fitted in the defect acetabulum. A ratio of 1.0 would represent a circular acetabulum. (4) Lateral center-edge angle (LCE angle), defined by the angle between the most lateral edge of the cranial roof and the body Z-axis, and (5) implant migration, defined by the distance between center of rotation (CoR) of the existing implant and CoR of native pelvis (Fig. 1B). Results. All data are presented as single values as well as median and [25. th. , 75. th. ]- percentile (Fig.2). Bone loss was 53.6 [41.5, 76.7] ml with a minimum of 19.0 ml and maximum of 103.9 ml. Bone formation was 15.7 [10.5, 21.2] ml with a minimum of 3.5 ml and a maximum of 41.6 ml. Ovality was 1.3 [1.1, 1.4] with a minimum of 1.0 and a maximum of 2.0. LCE angle was 30.4° [21.5°, 40.1°] with a minimum of 11.6° and a maximum of 63.0°. Implant migration was 25.3 [15.1, 32.6] mm with a minimum of 5.4 mm and a maximum of 53.5 mm. Discussion. Within this study, 50 hemi-pelvises with acetabular bone defects were successfully quantified using five clinically relevant parameters. Application of this method provides impartial and quantitative data of acetabular bone defects, which could be beneficial in clinical practice for pre-operative planning or comparison of surgical outcomes. Including a larger number of cases, this method could even serve as a basis for a novel classification system for acetabular bone defects. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 25 - 25
1 Oct 2022
Casali M Rani N Cucurnia I Filanti M Coco V Reale D Zarantonello P Musiani C Zaffagnini M Romagnoli M
Full Access

Aim. Aim of this monocentric, prospective study was to evaluate the safety, efficacy, clinical and radiographical results at 24-month follow-up (N = 6 patients) undergoing hip revision surgery with severe acetabular bone defects (Paprosky 2C-3A-3B) using a combination of a novel phase-pure betatricalciumphosphate - collagen 3D matrix with allograft bone chips. Method. Prospective follow-up of 6 consecutive patients, who underwent revision surgery of the acetabular component in presence of massive bone defects between April 2018 and July 2019. Indications for revision included mechanical loosening in 4 cases and history of hip infection in 2 cases. Acetabular deficiencies were evaluated radiographically and CT and classified according to the Paprosky classification. Initial diagnosis of the patients included osteoarthritis (N = 4), a traumatic fracture and a congenital hip dislocation. 5 patients underwent first revision surgery, 1 patient underwent a second revision surgery. Results. All patients were followed-up radiographically with a mean of 25,8 months. No complications were observed direct postoperatively. HHS improved significantly from 23.9 preoperatively to 81.5 at the last follow-up. 5 patients achieved a defined good result, and one patient achieved a fair result. No periprosthetic joint infection, no dislocations, no deep vein thrombosis, no vessel damage, and no complaint about limbs length discrepancy could be observed. Postoperative dysmetria was found to be + 0.2cm (0cm/+1.0cm) compared to the preoperative dysmetria of − 2.4 cm (+0.3cm/−5.7cm). Conclusions. Although used in severe acetabular bone defects, the novel phase-pure betatricalciumphosphate - collagen 3D matrixshowed complete resorption and replacement by newly formed bone, leading to a full implant integration at 24 months follow-up and thus represents a promising method with excellent bone regeneration capacities for complex cases, where synthetic bone grafting material is used in addition to autografts


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 18 - 18
19 Aug 2024
Sugano N Ando W Maeda Y Tamura K Uemura K Takashima K Hamada H
Full Access

In primary total hip arthroplasty (THA) for patients with Crowe II or higher classes developmental dysplasia of the hip (DDH) or rapidly destructive coxopathy (RDC), the placement of the cup can be challenging due to superior and lateral acetabular bone defects. Traditionally, bone grafts from resected femoral heads were used to fill these defects, but bulk graft poses a risk of collapse, especially in DDH with hypoplastic femoral heads or in RDC where good quality bone is scarce. Recently, porous metal augments have shown promising outcomes in revision surgeries, yet reports on their efficacy in primary THA are limited. This study retrospectively evaluated 27 patients (30 hips) who underwent primary THA using cementless cups and porous titanium acetabular augments for DDH or RDC, with follow-up periods ranging from 2 to 10 years (average 4.1 years). The cohort included 22 females (24 hips) and 5 males (6 hips), with an average age of 67 years at the time of surgery. The findings at the final follow-up showed no radiographic evidence of loosening or radiolucency around the cups and augments, indicating successful biological fixation in all cases. Clinically, there was a significant improvement in the WOMAC score from an average of 39.1±14.7 preoperatively to 5.1±6.4 postoperatively. These results suggest that the use of cementless cups and porous titanium acetabular augments in primary THA for DDH and RDC can lead to high levels of clinical improvement and reliable biological fixation, indicating their potential as a viable solution for managing challenging acetabular defects in these conditions


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 20 - 20
1 Apr 2019
Tang H Zhou Y Zhou B Huang Y Guo S
Full Access

Aims. Severe, superior acetabular bone defects are one of the most challenging aspects to revision total hip arthroplasty (THA). We propose a new concept of “superior extended fixation” as fixation extending superiorly 2 cm beyond the original acetabulum rim with porous metal augments, which is further classified into intracavitary and extracavitary fixation. We hypothesized that this new concept would improve the radiographic and clinical outcomes in patients with massive superior acetabular bone defects. Patients and Methods. Twenty eight revision THA patients were retrospectively reviewed who underwent reconstruction with the concept of superior extended fixation from 2014 to 2016 in our hospital. Patients were assessed using the Harris Hip Score (HHS) and the Western Ontario and McMaster Universities Osteoarthritis Index score (WOMAC). In addition, radiographs were assessed and patient reported satisfaction was collected. Results. At an average follow-up of 28 months (range 18 – 52 months), the postoperative HHS and WOMAC scores were significantly improved at the last follow-up (p < 0.001). The postoperative horizontal and vertical locations of the COR from the interteardrop line were significantly improved from the preoperative measurements (p < 0.001). One (3.6 %) patient was dissatisfied due to periprosthetic joint infection. Conclusion. Extracavitray and intracavitary superior extended fixation with porous metal augments and cementless cups are effective in reconstructing severe superior acetabular bone defects, with promising short-term clinical and radiographic outcome


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 6 - 6
23 Jun 2023
Callary S Barends J Solomon LB Nelissen R Broekhuis D Kaptein B
Full Access

The best treatment method of large acetabular bone defects at revision THR remains controversial. Some of the factors that need consideration are the amount of residual pelvic bone removed during revision; the contact area between the residual pelvic bone and the new implant; and the influence of the new acetabular construct on the centre of rotation of the hip. The purpose of this study was to compare these variables in two of the most used surgical techniques used to reconstruct severe acetabular defects: the trabecular metal acetabular revision system (TMARS) and a custom triflanged acetabular component (CTAC). Pre- and post-operative CT-scans were acquired from 11 patients who underwent revision THR with a TMARS construct for a Paprosky IIIB defect, 10 with pelvic discontinuity, at Royal Adelaide Hospital. The CT scans were used to generate computer models to virtually compare the TMARS and CTAC constructs using a semi-automated method. The TMARS construct model was calculated using postoperative CT scans while the CTAC constructs using the preoperative CT scans. The bone contact, centre of rotation, inclination, anteversion and reamed bone differences were calculated for both models. There was a significant difference in the mean amount of bone reamed for the TMARS reconstructions (15,997 mm. 3. ) compared to the CTAC reconstructions (2292 mm. 3. , p>0.01). There was no significant difference between overall implant bone contact (TMARS 5760mm. 2. vs CTAC 5447mm. 2. , p=0.63). However, there was a significant difference for both cancellous (TMARS 4966mm. 2. vs CTAC 2887mm. 2. , p=0.008) and cortical bone contact (TMARS 795mm. 2. vs CTAC 2560mm. 2. , p=0.001). There was no difference in inclination and anteversion achieved. TMARS constructs resulted on average in a centre of rotations 7.4mm more lateral and 4.0mm more posterior. Modelling of two different reconstructions of Paprosky IIIB defects demonstrated potential important differences between all variables investigated


The Paprosky acetabular bone defect classification system and related algorithms for acetabular reconstruction cannot properly guide cementless acetabular reconstruction in the presence of porous metal augments. We aimed to introduce a rim, points, and column (RPC)-oriented cementless acetabular reconstruction algorithm and its clinical and radiographic outcomes. A total of 123 patients (128 hips) were enrolled. A minimum 5-year radiographic follow-up was available for 96 (75.8%) hips. The mean clinical and radiographic follow-up durations were 6.8±0.9 (range: 5.2–9.2) and 6.3±1.9 (range: 5.0–9.2) years, respectively. Harris hip score (HHS) improved significantly from 35.39±9.91 preoperatively to 85.98±12.81 postoperatively (P<0.001). Among the fixation modes, 42 (32.8%) hips were reconstructed with rim fixation, 42 (32.8%) with three-point fixation without point reconstruction, 40 (31.3%) with three-point fixation combined with point reconstruction, and 4 (3.1%) with three-point fixation combined with pelvic distraction. Complementary medial wall reconstruction was performed in 20 (15.6%) patients. All acetabular components were radiographically stable. Nine-year cumulative Kaplan–Meier survival rates for 123 patients with the endpoint defined as periprosthetic joint infection, any reoperation, and dissatisfaction were 96.91% (confidence interval [CI]: 86.26%, 99.34%), 97.66% (CI: 92.91%, 99.24%), and 96.06% (CI: 86.4%, 98.89%), respectively. Cup stability in cementless acetabular reconstruction depends on rim or three-point fixation. The continuity of the anterior and posterior columns determines whether the points provide adequate stability to the cup. Medial wall reconstruction is an important complementary fixation method for rim or three-point fixation. The patients who underwent cementless acetabular reconstruction guided by the RPC decision-making algorithm demonstrated satisfactory mid-term clinical function, satisfaction levels, radiographic results, and complication rates


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 79 - 79
1 Apr 2018
Lee W Han C Yang I Park K
Full Access

Introduction. Reinforcement ring with allograft bone is commonly used for acetabular reconstruction of bone defects because it can achieve stable initial fixation of the prosthesis. It is not clear whether the allograft bone can function as a viable host bone and provide long-standing structural support. The purpose of this study was to assess to long-term survival of the reinforcement rings and allograft bone incorporation after acetabular revisions. Methods. We retrospectively reviewed 39 hips (37 patients) who underwent reconstruction of the acetabulum with a Ganz reinforcement ring and allograft bone in revision total hip arthroplasty. There were 18 females and 19 males with a mean age of 55.9 years (35–74 years). The minimum postoperative follow-up period was 10 years (10∼17 years). We assessed the acetabular bone defect using the Paprosky's classification. We determined the rates of loosening of the acetabular reconstructions, time to aseptic loosening, integration of the allograft bone, resorption of the allograft bone, and survival rate. Aseptic loosening of the acetabular component was defined as a change in the cup migration of more than 5 mm or a change in the inclination angle of more than 5° or breakage of the acetabular component at the time of the follow-up. Graft integration was defined as trabecular remodelling crossing the graft-host interface. Resorption of the allograft bone was classified as minor (<1/3), moderate (1/3–1/2) or severe (>1/2). Kaplan-Meier survivorship analysis was performed for aseptic loosening of the acetabular component. The results. The acetabular bone defects were classified as follows: 8 type II hips (4 type IIB, 4 type IIC), and 31 type III hips (17 type IIIA, 14 type IIIB). Fourteen (35.9%) of 39 hips was defined as aseptic loosening of an acetabular component. Loosening was more frequent in type IIIB (57.1%) than in type IIIA hips (29.4%). Mean time to aseptic loosening of the acetabular reconstructions was 6.3 years in type IIIA and from 5 years in type IIIB defects, respectively. Allograft bone incorporation was satisfactory in 66.7% of hips. There was minor bone resorption in 14.3% and moderate bone resorption in 10.2%. In 9 hips (23.1%), severe resorption of the allograft bone was observed and early component loosening was observed in these cases. The survival rate of acetabular component at 10 years of follow-up was 63.6% (95% confidence interval, 49–77%) with aseptic loosening as endpoints. Conclusions. The long-term survival rate of acetabular revision using the reinforcement ring and allograft bone in the reconstruction of severe acetabular bone defects was unsatisfactorily low due to loosening of acetabular components. Because of unfavorable graft incorporation into a host bone, an alternative component and structural support may be employed in the reconstruction of severe acetabular bone defects


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 17 - 17
7 Jun 2023
Madanipour S Lemanu D Jayadev C Aston W Donaldson J Miles J Carrington R McCulloch R Skinner J
Full Access

Custom acetabular components have become an established method of treating massive acetabular bone defects in hip arthroplasty. Complication rates, however, remain high and migration of the cup is still reported. Ischial screw fixation (IF) has been demonstrated to improve mechanical stability for non-custom, revision arthroplasty cup fixation. We hypothesise that ischial fixation through the flange of a custom acetabular component aids in anti-rotational stability and prevention of cup migration. Electronic patient records were used to identify a consecutive series of 49 custom implants in 46 patients from 2016 to 2022 in a unit specializing in complex joint reconstruction. IF was defined as a minimum of one screw inserted into the ischium passing through a hole in a flange on the custom cup. The mean follow-up time was 30 months. IF was used in 36 cups. There was no IF in 13 cups. No difference was found between groups in age (68.9 vs. 66.3, P = 0.48), BMI (32.3 vs. 28.2, P = 0.11) or number of consecutively implanted cups (3.2 vs. 3.6, P = 0.43). Aseptic loosening with massive bone loss was the primary indication for revision. There existed no difference in Paprosky grade between the groups (P = 0.1). 14.2% of hips underwent revision and 22.4% had at least one dislocation event. No ischial fixation was associated with a higher risk of cup migration (6/13 vs. 2/36, X2 = 11.5, P = 0.0007). Cup migration was associated with an increased risk for all cause revision (4/8 vs. 3/38, X2 = 9.96, P = 0.0016, but not with dislocation (3/8 vs. 8/41, X2 = 1.2, P = 0.26). The results suggest that failure to achieve adequate ischial fixation, with screws passing through the flange of the custom component into the ischium, increases the risk of cup migration, which, in turn, is a risk factor for revision


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 20 - 20
1 Aug 2018
Ohashi H Yo H Ikawa T Minami Y Teraoka T
Full Access

Reconstruction of massive acetabular bone defects in primary and revision THA is challenging for reconstructive joint surgeons. The use of porous metal augments is one of the options. The advantages of porous metal augments are easy to use, modularity and lack of resorption. We investigated the radiological results of porous metal augments used for massive acetabular bone defects in primary and revision THA. Forty-one hips in forty patients had porous metal augments between 2011 and 2016. Thirty of the procedures were revision arthroplasties and 11 were primary procedures (Crowe type III in 5 hips, Crowe type IV in 3, septic hip sequalae in 2 and RA in one). Four of the revisions were second-stage reimplantation after infection. The Paprosky classification for revision was 2B in 4 hips, 2C in one, 3A in 3 and 3B in 22. Regenerex augments were used in 39 hips and trabecular metal augments were used in 2. Thirty-six cups were cemented and 5 cups were uncemented. Mean follow-up was 37.6 months (range, 1–82). Radiographic findings of osteointegration between host bone and the porous metal augments were assessed. The presence or absence of radiolucent lines between cement or cup/host bone and augment/host bone interface was noted. Two revisions were performed due to infection, one month and 66 months after operation. The other implants were stable without any complications. Osteointegration between host bone and the porous metal augments were recognized in 36 hips. Radiolucent lines between cement/host bone interface, less than 1 mm in width, were visualized in 2 hips. Porous metal augments are convenient and our short-term results showed excellent radiological results for massive acetabular bone defects in primary and revision THA


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 70 - 70
1 Jan 2016
Iwase T Ito T Morita D
Full Access

Purpose. The purpose of the present study is to assess 5–10 years' follow-up results after acetabular impaction bone grafting (IBG) in primary cemented total hip arthroplasty (THA) for cases with acetabular bone defect. Patients and methods. We performed 36 primary cemented THA with acetabular IBG in 33 patients between November 2004 and May 2009. As one patient died due to unrelated disease at 6 months after the surgery, 35 hips of 32 patients were included in this study. The average age at the surgery was 62.4 years, and the average follow-up period was 7.9 years (5–10 years). Diagnoses were osteoarthritis due to acetabular dysplasia in 28 hips (26 patients), Rheumatoid arthritis (RA) in 4 hips (3 patients), rapidly destructive coxopathy (RDC) in 1 hip (1 patient), idiopathic acetabular protrusion in 1 hip (1 patient), and acromegaly in 1 hip (1 patient). For clinical assessment, the Merle d'Aubigné and Postel hip score was assessed and degree of post-operative improvement was classified according to their method as very great improvement, great improvement, fair improvement, and failure. Perioperative complications were also recorded. Acetabular bone defects were assessed at the surgery and categorized using AAOS acetabular bone defect classification system. For radiological assessment, anteroposterior radiographs of the bilateral hip joints were analyzed preoperatively and post-operatively. Radiolucent lines (RLL) of more than 2 mm around the acetabular components were assessed using the DeLee and Charnley zone classification. Acetabular component loosening was assessed according to the Hodgkinson et al. classification system, and type 3 (complete demarcation line) and type 4 (migration) were classified as “loosening”. Results. The mean Merle d'Aubigné and Postel hip score improved from 9.8 points before the operation to 15.9 points at the final follow-up. Degree of post-operative improvement was assessed as “very great” in 11 hips, “great” in 23 hips and “fair” in 1 hip. Dislocation, DVT, and infection were recorded in 1 hip, 1 hip, and 1 hip, respectively. Re-operation was performed for the acute infection (without loosening) case at 5.3 years after the primary THA. Acetabular bone defects were classified as segmental defect (AAOS type I) in 29 hips, cavitary defect (AAOS type II) in 3 hips and combined segmental and cavitary defect (AAOS type III) in 3 hips. Metal meshes were used for segmental defects of 29 AAOS type I hips and 2 AAOS type III hips, and for medial wall defect of 1 AAOS III hip. On radiographic assessment, no metal device breakage was detected during the follow-up period. There were no clear lines around the cup and all cups were assessed as stable at the final follow-up. Conclusion. Acetabular impaction bone grafting in primary cemented THA is technically demanding procedure. However, postoperative functional improvement is remarkable and stable radiographic findings were achievable independent from original diagnoses. This procedure is one of useful options to restore acetabular bone deficiency in cemented primary THA for cases with acetabular bone defect


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 79 - 79
1 Feb 2020
Schierjott R Hettich G Ringkamp A Baxmann M Grupp T
Full Access

Introduction. Primary stability is an important factor for long-term implant survival in total hip arthroplasty. In revision surgery, implant fixation becomes especially challenging due the acetabular bone defects, which are often present. Previous studies on primary stability of revision components often applied simplified geometrical defect shapes in a variety of sizes and locations. The objectives of this study were to (1) develop a realistic defect model in terms of defect volume and shape based on a clinically existing acetabular bone defect, (2) develop a surrogate acetabular test model, and (3) exemplarily apply the developed approach by testing the primary stability of a pressfit-cup with and without bone graft substitute (BGS). Materials & Methods. Based on clinical computed tomography data and a method previously published [1], volume and shape information of a representative defect, chosen in consultation with four senior hip revision surgeons, was derived. Volume and shape of the representative defect was approximated by nine reaming procedures with hemispherical acetabular reamers, resulting in a simplified defect with comparable volume (18.9 ml original vs. 18.8 ml simplified) and shape. From this simplified defect (Defect D), three additional defect models (Defect A, B, C) were derived by excluding certain reaming procedures, resulting in four defect models to step-wise test different acetabular revision components. A surrogate acetabular model made of 20 PCF polyurethane foam with the main support structures was developed [2]. For the exemplary test, three series for Defect A were defined: Native (acetabulum without defect), Empty (defect acetabulum without filling), Filled (defect acetabulum with BGS filling). All series were treated with a pressfit-cup and subjected to dynamic axial load in direction of maximum resultant force during level walking. Minimum load was 300 N and maximum load was increased step-wise from 600 N to 3000 N. Total relative motion between cup and foam, consisting of inducible displacement and migration, was assessed with the optical measurement system gom Aramis (gom GmbH, Braunschweig, DE). Results. Total relative motion increased with increasing load, with a maximum of 0.63 mm for Native, 0.86 mm for Filled, and 1.9 mm for Empty. At load stage 1800 N, total relative motion in Empty was 11.0-fold increased in comparison to Native, but could be reduced to a 3.3-fold increase in Filled. Discussion. The objective of this study was to develop a simplified, yet realistic and modular defect model which could be used to step-wise test different treatment strategies. Applicability of the developed test setup was shown by assessing primary stability of a pressfit-cup in a native, empty, and filled situation. The presented method could potentially be used as a modular test setup to compare different acetabular revision components in a standardized way. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 6 - 6
1 Feb 2020
Ando W Hamada H Takao M Sugano N
Full Access

Introduction. Acetabular revision surgery is challenging due to severe bone defects. Burch-Schneider anti-protrusion cages (BS cage: Zimmer-Biomet) is one of the options for acetabular revision, however higher dislocation rate was reported. A computed tomography (CT)-based navigation system indicates us the planned direction for implantation of a cemented acetabular cup during surgery. A large diameter femoral head is also expected to reduce the dislocation rate. The purpose of this study is to investigate short-term results of BS cage in acetabular revision surgery combined with the CT-based navigation system and the use of large diameter femoral head. Methods. Sixteen hips of fifteen patients who underwent revision THA using allografts and BS cage between September 2013 and December 2017 were included in this study with the follow-up of 2.7 (0.1–5.0) years. There were 12 women and three men with a mean age of 78.6 years (range, 59–61 years). The cause of acetabular revision was aseptic loosening in all hips. The failed acetabular cup was carefully removed, and acetabular bone defect was graded using the Paprosky classification. Structural allografts were morselized and packed for all medial or contained defects. In some cases, solid allograft was implanted for segmental defects. BS cage was molded to optimize stability and congruity to the acetabulum and fixed with 6.5 mm titanium screws to the iliac bone. The inferior flange was slotted into the ischium. The upside-down trial cup was attached to a straight handle cup positioner with instrumental tracker (Figure 1) and placed on the rim of the BS cage to confirm the direction of the target angle for cement cup implantation under the CT-based navigation system (Stryker). After removing the cement spacer around the X3 RimFit cup (Stryker) onto the BS cage for available maximum large femoral head, the cement cup was implanted with confirming the direction of targeting angle. Japanese Orthopedic Association score (JOA score) of the hip was used for clinical assessment. Implant position, loosening, and consolidation of allograft were assessed using anterior and lateral radiographies of the pelvis. Results. Fifteen hips had a Paprosky IIIB defect, and one hip had a pelvic discontinuity. JOA score significantly improved postoperatively. No radiolucent lines and no displacement of BS cage could be found in 9 of 15 hips. Consolidation of allografts above the protrusion cage was observed in these patients. Displacement of BS cage (>5mm) was observed in 6 hips and displacement was stopped with allograft consolidation in 5 of 6 hips. The other patient showed lateral displacement of BS cage and underwent revision surgery. Average cup inclination and anteversion angles were 37.7±5.0 degree and 24.6±7.2 degree, respectively. 12 of 16 patients were included in Lewinnek's safe zone. One patient with 32 mm diameter of the femoral head had dislocation at 17 days postoperatively. All patients who received ≥36mm diameter of femoral head showed no dislocation. Conclusions. CT-based navigation system and the use of large femoral head may influence the prevention of dislocation in the acetabular revision surgery with BS cage for severe acetabular bone defects


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 113 - 114
1 Mar 2010
Uchiyama K Takahira N Takasaki S Fukushima K Yamamoto T Itoman M
Full Access

Management of severe acetabular bone loss at the time of revision total hip replacements (THR) remains has been one of the greater challenges for hip surgeon. Recently, many methods of acetabular reconstruction have been described and various materials are used for supplement of the bone stock deficiency in acetabular revision THR. The purpose of this study was to evaluate the midterm results of the using support ring with bone allografts in acetabular revision THR. From 1990 to 2005, forty-six acetabular revisions using supporting ring with bone allografts were performed at our institution. All patients were followed up for a minimum of three years with a mean follow-up of 7.5 years. Pre-operative radiological acetabular bone defects were assessed and classified by author’s classification (Itoman’s classification). Radiological analysis involved a general qualitative evaluation. The position of the acetabular reinforcement ring was measured on radiograms, taken immediately after revision surgery and again at the time of last follow-up. Using a MEM template, cranio-central migration and cup inclination angle were measured. Kaplan-Meier survivorship analysis was performed. The end point was revision because of mechanical loosening of the acetabular implant. We used thirty-six Ganz rings, six Müller rings, three Kerboull T-plate and two Burch-Schneider anti-protrusion cages. The acetabular bone defects were classified as: 10 hips Type B (central defect), 9 hips Type C (cranial defect), 27 hips Type D (cranial-central defect). Migration of acetabular component was defined as a change of > 5mm in the cranial or central direction of the cup or a change in the cup inclination angle of > 5° at the time of last follow-up. All the Eleven acetabular components which had defined as loose were Type D. One acetabular component was revised because of mechanical loosening, four were revised because of infection, and one was broken polyethylene liner. Kaplan-Meier survivorship of these reconstructions was 96.2 % at 10 years. Allograft reconstruction of acetabular bone defect in revision total hip replacement is beneficial procedure. The remaining pelvic bone is usually in poor condition, therefore, it is necessary to ensure primary fixation with the reinforcement ring with bone allografts


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 89 - 89
1 Mar 2017
Plate J Shields J Bolognesi M Seyler T Lang J
Full Access

Introduction. The number of complex revision total hip arthroplasties (THA) is predicted to rise. The identification of acetabular bone defects prior to revision THA has important implications on technique and complexity of acetabular reconstruction. Paprosky et al. proposed a classification system including 3 main types with up to 3 subtypes focused on the integrity of the superior rim of the acetabulum and medial wall. However, the classification system is complex and its reliability has been questioned. The purpose of this study was to evaluate the effectiveness of different radiologic imaging modalities (plain radiographs, 2-D CT, 3-D CT reconstructions) in classifying acetabular defects in revision hip arthroplasty cases and their value of at different levels of orthopaedic training. Methods. Patients treated with revision total hip arthroplasty for acetabular bone defects between 2002–2012 were identified and 22 cases selected that had plain radiographs, 2-D CT and 3-D reconstructions available. Bone defects were classified independently by two fellowship-trained adult reconstruction surgeons. Representative sections were chosen and compiled into a timed presentation. Thirty-five residents from PGY-1 to PGY-5 and 4 attending orthopaedic surgeons were recruited for this study and received a 15-minute introduction to the classification system. Chi square analysis was utilized to examine the influence of image modality and level of training on the correct classification of acetabular bone loss using the Paprosky classification system with alpha=0.05. Results. The correct classification regardless of imaging of PGY levels was 30%. The level of training did not influence the ability to classify an acetabular defect (p=0.918). Correct classification was significantly influenced by the imaging used. Using x-ray led to 37% correctly identified defects, CT scans to 33% and 3D modeling to 30% of correct answers (p<0.001). For Class 1 defects, x-ray imaging had significantly higher number of correct classification (93%) compared to CT scans (67%) and 3D modeling (31%, p<0.001). Similarly, 2A defects were classified correctly with higher frequency on x-ray (49%) compared to CT scans (36%) or 3D modeling (15%, p=0.007). For type 2B, 2C, 3A and 3B defects, the type of imaging did not influence the frequency of correct answer. The level of training did not influence the frequency of correct classification regardless of the type of defect (p<0.05). However, there was a significant difference based on the defect type (p<0.001). Regardless of level of training or imaging, 64% of observers recognized type 1 defects, compared to only 16% correct recognition of 3B defects. Discussion. In the current study using different image modalities, residents regardless of the level of training were only able to classify 30% of defects correctly using the Paprosky classification system of acetabular defects. Using plain x-rays led to an increased number of correct classification, while regular CT scan and 3D CT reconstructions did not improve accuracy. The cost for advanced imaging when using this classification may not be justified. The Paprosky classification system of acetabular defects can be used for treatment decisions; however, it is complex and residents may require increased education in its use and identification of defects


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 84 - 84
1 Jan 2016
Uemura K Takao M Sakai T Nishii T Sugano N
Full Access

Introduction. Support cages are often used for reconstruction of acetabular bone defects in revision total hip arthroplasty. A Burch-Schneider cage is one of the most reliable systems that has shown good clinical results. It has an ischial flange and an iliac plate for screw fixation to the ilium. It is sometimes necessary to bend the flange or the plate to fit the shape of the peri-acetabulum. However, the frequency, indications, and characteristics of bending the flange or plate have not been reported. To clarify them, a simulation study was conducted. Materials and methods. Twenty-five cases with acetabular bone defects of Paprosky type 2, 3, or 4 were the subjects of this study. A 3D template surgical simulation was conducted using 3D surface models of the Burch-Schneider cage and acetabulum. The size of the cage was determined by the size of the cavitary bone defect. Placement of the cage was performed in two ways. One was the iliac plate fitting method, in which fitting of the iliac plate to the ilium was performed first, followed by bending of the ischial flange to keep the flange in the center of the ischium. When bending of the flange was needed, it was bent at the base. The other method was the ischial flange fitting method, in which the ischial flange was inserted from the center of the ischium, followed by bending of the iliac flange to adapt to the ilium. When bending of the plate was needed, it was bent at the base. In both methods, the direction and angle of bending were measured. Results. In the iliac plate fitting method, the cage adapted the acetabulum without bending the ischial flange in 12 cases, and with lateral bending in 11 cases. The bending angle was less than 30° in 8 cases. Three cases required more than 30° of bending and there were also 2 cases which were impossible to fit the acetabulum even with bending the ischial flange. This was due to the large bone defect at the superolateral region of the acetabulum. In the ischial flange fitting method, the cage adapted the acetabulum without bending in 12 cases. The remaining 13 cases required less than 30° of iliac plate lateral bending. Discussion. The iliac plate fitting method is a clinically oriented method since the insertion position of the ischial flange is determined after fitting the provisional cage with an iliac plate. However, in cases with a large bone defect in the superolateral region of the acetabulum, some were impossible to fit. On the other hand, with the ischial flange fitting method, the cage could fit all types of acetabular defects. This suggests that, even in cases with a bone defect in the superolateral region of the acetabulum, the Burch-Schneider cage is a usable instrument. Conclusion. The half of the cases required lateral bending of the ischial flange or iliac plate. If there is a large bone defect at the superolateral region of the acetabulum, the iliac plate may need to be bent


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 58 - 58
1 Feb 2020
Garcia-Rey E Garcia-Cimbrelo E
Full Access

Introduction. Biological repair of acetabular bone defects after impaction bone grafting (IBG) in total hip arthroplasty could facilitate future re-revisions in case of failure of the reconstruction again using the same technique. Few studies have analysed the outcome of these acetabular re-revisions. Patients and Methods. We analysed 34 consecutive acetabular re-revisions that repeated IBG and a cemented cup in a cohort of 330 acetabular IBG revisions. Fresh-frozen femoral head allografts were morselized manually. All data were prospectively collected. Kaplan-Meier survivorship analysis was performed. The mean follow-up after re-revision was 7.2 years (2–17). Intraoperative bone defect had lessened after the first failed revision. At the first revision there were 14 hips with Paprosky 3A and 20 with Paprosky type 3B. At the re-revision there were 5 hips with Paproky 2B, 21 with Paprosky type 3A and 8 with type 3B. Lateral mesh was used in 19 hips. Results. The mean Harris Hip Score improved from 45.4 (6.7) to 77.1 (15.6) at final follow-up. The radiological analysis showed cup migration in 11 hips. The mean appearance time was 25 months (3–72). Of these, migration in three cups was progressive and painful requiring re-revision. Cup tilt was found in all migrated hips. There were one dislocation requiring a cemented dual mobility cup associated with IBG and one infection resolved with resection-arthroplasty. Survival with further cup revision for aseptic loosening was 80.7% (95% Confidence Interval 57.4–100) at 11 years. In all surviving re-revisions trabecular incorporation was observed without radiolucent lines. Conclusion. Biological repair can be obtained by restoring the bone stock, even after successive acetabular reconstructions using IBG and a cemented cup