Aims. To develop
Aims. Machine-learning (ML)
Aims. The aims of this study were to assess mapping models to predict the three-level version of EuroQoL five-dimension utility index (EQ-5D-3L) from the Oxford Knee Score (OKS) and validate these before and after total knee arthroplasty (TKA). Methods. A retrospective cohort of 5,857 patients was used to create the
Aims. No predictive model has been published to forecast operating time for total knee arthroplasty (TKA). The aims of this study were to design and validate a predictive model to estimate operating time for robotic-assisted TKA based on demographic data, and evaluate the added predictive power of CT scan-based predictors and their impact on the accuracy of the predictive model. Methods. A retrospective study was conducted on 1,061 TKAs performed from January 2016 to December 2019 with an image-based robotic-assisted system. Demographic data included age, sex, height, and weight. The femoral and tibial mechanical axis and the osteophyte volume were calculated from CT scans. These inputs were used to develop a predictive model aimed to predict operating time based on demographic data only, and demographic and 3D patient anatomy data. Results. The key factors for predicting operating time were the surgeon and patient weight, followed by 12 anatomical parameters derived from CT scans. The predictive model based only on demographic data showed that 90% of predictions were within 15 minutes of actual operating time, with 73% within ten minutes. The predictive model including demographic data and CT scans showed that 94% of predictions were within 15 minutes of actual operating time and 88% within ten minutes. Conclusion. The primary factors for predicting robotic-assisted TKA operating time were surgeon, patient weight, and osteophyte volume. This study demonstrates that incorporating 3D patient-specific data can improve operating time
Aims. The number of convolutional neural networks (CNN) available for fracture detection and classification is rapidly increasing. External validation of a CNN on a temporally separate (separated by time) or geographically separate (separated by location) dataset is crucial to assess generalizability of the CNN before application to clinical practice in other institutions. We aimed to answer the following questions: are current CNNs for fracture recognition externally valid?; which methods are applied for external validation (EV)?; and, what are reported performances of the EV sets compared to the internal validation (IV) sets of these CNNs?. Methods. The PubMed and Embase databases were systematically searched from January 2010 to October 2020 according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The type of EV, characteristics of the external dataset, and diagnostic performance characteristics on the IV and EV datasets were collected and compared. Quality assessment was conducted using a seven-item checklist based on a modified Methodologic Index for NOn-Randomized Studies instrument (MINORS). Results. Out of 1,349 studies, 36 reported development of a CNN for fracture detection and/or classification. Of these, only four (11%) reported a form of EV. One study used temporal EV, one conducted both temporal and geographical EV, and two used geographical EV. When comparing the CNN’s performance on the IV set versus the EV set, the following were found: AUCs of 0.967 (IV) versus 0.975 (EV), 0.976 (IV) versus 0.985 to 0.992 (EV), 0.93 to 0.96 (IV) versus 0.80 to 0.89 (EV), and F1-scores of 0.856 to 0.863 (IV) versus 0.757 to 0.840 (EV). Conclusion. The number of externally validated CNNs in orthopaedic trauma for fracture recognition is still scarce. This greatly limits the potential for transfer of these CNNs from the developing institute to another hospital to achieve similar diagnostic performance. We recommend the use of geographical EV and statements such as the Consolidated Standards of Reporting Trials–Artificial Intelligence (CONSORT-AI), the Standard Protocol Items: Recommendations for Interventional Trials–Artificial Intelligence (SPIRIT-AI) and the Transparent Reporting of a multivariable
To map literature on prognostic factors related to outcomes of revision total knee arthroplasty (rTKA), to identify extensively studied factors and to guide future research into what domains need further exploration. We performed a systematic literature search in MEDLINE, Embase, and Web of Science. The search string included multiple synonyms of the following keywords: "revision TKA", "outcome" and "prognostic factor". We searched for studies assessing the association between at least one prognostic factor and at least one outcome measure after rTKA surgery. Data on sample size, study design, prognostic factors, outcomes, and the direction of the association was extracted and included in an evidence map.Aims
Methods
Artificial intelligence and machine-learning analytics have gained extensive popularity in recent years due to their clinically relevant applications. A wide range of proof-of-concept studies have demonstrated the ability of these analyses to personalize risk prediction, detect implant specifics from imaging, and monitor and assess patient movement and recovery. Though these applications are exciting and could potentially influence practice, it is imperative to understand when these analyses are indicated and where the data are derived from, prior to investing resources and confidence into the results and conclusions. In this article, we review the current benefits and potential limitations of machine-learning for the orthopaedic surgeon with a specific emphasis on data quality.
This systematic review aims to identify 3D predictors derived from biplanar reconstruction, and to describe current methods for improving curve prediction in patients with mild adolescent idiopathic scoliosis. A comprehensive search was conducted by three independent investigators on MEDLINE, PubMed, Web of Science, and Cochrane Library. Search terms included “adolescent idiopathic scoliosis”,“3D”, and “progression”. The inclusion and exclusion criteria were carefully defined to include clinical studies. Risk of bias was assessed with the Quality in Prognostic Studies tool (QUIPS) and Appraisal tool for Cross-Sectional Studies (AXIS), and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach. In all, 915 publications were identified, with 377 articles subjected to full-text screening; overall, 31 articles were included.Aims
Methods
To perform an incremental cost-utility analysis and assess the impact of differential costs and case volume on the cost-effectiveness of robotic arm-assisted unicompartmental knee arthroplasty (rUKA) compared to manual (mUKA). This was a five-year follow-up study of patients who were randomized to rUKA (n = 64) or mUKA (n = 65). Patients completed the EuroQol five-dimension questionnaire (EQ-5D) preoperatively, and at three months and one, two, and five years postoperatively, which was used to calculate quality-adjusted life years (QALYs) gained. Costs for the primary and additional surgery and healthcare costs were calculated.Aims
Methods
The principles of evidence-based medicine (EBM) are the foundation of modern medical practice. Surgeons are familiar with the commonly used statistical techniques to test hypotheses, summarize findings, and provide answers within a specified range of probability. Based on this knowledge, they are able to critically evaluate research before deciding whether or not to adopt the findings into practice. Recently, there has been an increased use of artificial intelligence (AI) to analyze information and derive findings in orthopaedic research. These techniques use a set of statistical tools that are increasingly complex and may be unfamiliar to the orthopaedic surgeon. It is unclear if this shift towards less familiar techniques is widely accepted in the orthopaedic community. This study aimed to provide an exploration of understanding and acceptance of AI use in research among orthopaedic surgeons. Semi-structured in-depth interviews were carried out on a sample of 12 orthopaedic surgeons. Inductive thematic analysis was used to identify key themes.Aims
Methods
This study aimed to evaluate sagittal spinopelvic alignment (SSPA) in the early stage of rapidly destructive coxopathy (RDC) compared with hip osteoarthritis (HOA), and to identify risk factors of SSPA for destruction of the femoral head within 12 months after the disease onset. This study enrolled 34 RDC patients with joint space narrowing > 2 mm within 12 months after the onset of hip pain and 25 HOA patients showing femoral head destruction. Sharp angle was measured for acetabular coverage evaluation. Femoral head collapse ratio was calculated for assessment of the extent of femoral head collapse by RDC. The following parameters of SSPA were evaluated using the whole spinopelvic radiograph: pelvic tilt (PT), sacral slope (SS), pelvic incidence (PI), sagittal vertical axis (SVA), thoracic kyphosis angle (TK), lumbar lordosis angle (LL), and PI-LL.Aims
Methods
It is unclear whether acute plate fixation facilitates earlier return of normal shoulder function following a displaced mid-shaft clavicular fracture compared with nonoperative management when union occurs. The primary aim of this study was to establish whether acute plate fixation was associated with a greater return of normal shoulder function when compared with nonoperative management in patients who unite their fractures. The secondary aim was to investigate whether there were identifiable predictors associated with return of normal shoulder function in patients who achieve union with nonoperative management. Patient data from a randomized controlled trial were used to compare acute plate fixation with nonoperative management of united fractures. Return of shoulder function was based on the age- and sex-matched Disabilities of the Arm, Shoulder and Hand (DASH) scores for the cohort. Independent predictors of an early recovery of normal shoulder function were investigated using a separate prospective series of consecutive nonoperative displaced mid-shaft clavicular fractures recruited over a two-year period (aged ≥ 16 years). Patient demographics and functional recovery were assessed over the six months post-injury using a standardized protocol.Aims
Methods