Aims. The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. Methods. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the
Aims. The purpose of this study was to develop a personalized outcome prediction tool, to be used with knee arthroplasty patients, that predicts outcomes (lengths of stay (LOS), 90 day readmission, and one-year patient-reported outcome measures (PROMs) on an individual basis and allows for dynamic modifiable risk factors. Methods. Data were prospectively collected on all patients who underwent total or unicompartmental knee arthroplasty at a between July 2015 and June 2018. Cohort 1 (n = 5,958) was utilized to develop models for LOS and 90 day readmission. Cohort 2 (n = 2,391, surgery date 2015 to 2017) was utilized to develop models for one-year improvements in Knee Injury and Osteoarthritis Outcome Score (KOOS) pain score, KOOS function score, and KOOS quality of life (QOL) score. Model accuracies within the imputed data set were assessed through cross-validation with
The Manchester-Oxford Foot Questionnaire (MOxFQ) is an anatomically specific patient-reported outcome measure (PROM) currently used to assess a wide variety of foot and ankle pathology. It consists of 16 items across three subscales measuring distinct but related traits: walking/standing ability, pain, and social interaction. It is the most used foot and ankle PROM in the UK. Initial MOxFQ validation involved analysis of 100 individuals undergoing hallux valgus surgery. This project aimed to establish whether an individual’s response to the MOxFQ varies with anatomical region of disease (measurement invariance), and to explore structural validity of the factor structure (subscale items) of the MOxFQ. This was a single-centre, prospective cohort study involving 6,637 patients (mean age 52 years (SD 17.79)) presenting with a wide range of foot and ankle pathologies between January 2013 and December 2021. To assess whether the MOxFQ responses vary by anatomical region of foot and ankle disease, we performed multigroup confirmatory factor analysis. To assess the structural validity of the subscale items, exploratory and confirmatory factor analyses were performed.Aims
Methods
Achieving accurate implant positioning and restoring native hip biomechanics are key surgeon-controlled technical objectives in total hip arthroplasty (THA). The primary objective of this study was to compare the reproducibility of the planned preoperative centre of hip rotation (COR) in patients undergoing robotic arm-assisted THA versus conventional THA. This prospective randomized controlled trial (RCT) included 60 patients with symptomatic hip osteoarthritis undergoing conventional THA (CO THA) versus robotic arm-assisted THA (RO THA). Patients in both arms underwent pre- and postoperative CT scans, and a patient-specific plan was created using the robotic software. The COR, combined offset, acetabular orientation, and leg length discrepancy were measured on the pre- and postoperative CT scanogram at six weeks following surgery.Aims
Methods
This systematic review aims to compare the precision of component positioning, patient-reported outcome measures (PROMs), complications, survivorship, cost-effectiveness, and learning curves of MAKO robotic arm-assisted unicompartmental knee arthroplasty (RAUKA) with manual medial unicompartmental knee arthroplasty (mUKA). Searches of PubMed, MEDLINE, and Google Scholar were performed in November 2021 according to the Preferred Reporting Items for Systematic Review and Meta-Analysis statement. Search terms included “robotic”, “unicompartmental”, “knee”, and “arthroplasty”. Published clinical research articles reporting the learning curves and cost-effectiveness of MAKO RAUKA, and those comparing the component precision, functional outcomes, survivorship, or complications with mUKA, were included for analysis.Aims
Methods
Oxidized zirconium (OxZi) and highly cross-linked polyethylene (HXLPE) were developed to minimize wear and risk of osteolysis in total hip arthroplasty (THA). However, retrieval studies have shown that scratched femoral heads may lead to runaway wear, and few reports of long-term results have been published. The purpose of this investigation is to report minimum ten-year wear rates and clinical outcomes of THA with OxZi femoral heads on HXLPE, and to compare them with a retrospective control group of cobalt chrome (CoCr) or ceramic heads on HXLPE. From 2003 to 2006, 108 THAs were performed on 96 patients using an OxZi head with a HXLPE liner with minimum ten-year follow-up. Harris Hip Scores (HHS) were collected preoperatively and at the most recent follow-up (mean 13.3 years). Linear and volumetric liner wear was measured on radiographs of 85 hips with a minimum ten-year follow-up (mean 14.5 years). This was compared to a retrospective control group of 45 THAs using ceramic or CoCr heads from October 1999 to February 2005, with a minimum of ten years’ follow-up.Aims
Methods
The primary objective of this study was to develop a validated classification system for assessing iatrogenic bone trauma and soft-tissue injury during total hip arthroplasty (THA). The secondary objective was to compare macroscopic bone trauma and soft-tissues injury in conventional THA (CO THA) versus robotic arm-assisted THA (RO THA) using this classification system. This study included 30 CO THAs versus 30 RO THAs performed by a single surgeon. Intraoperative photographs of the osseous acetabulum and periacetabular soft-tissues were obtained prior to implantation of the acetabular component, which were used to develop the proposed classification system. Interobserver and intraobserver variabilities of the proposed classification system were assessed.Aims
Methods
This study addressed two questions: first, does surgical correction of an idiopathic scoliosis increase the volume of the rib cage, and second, is it possible to evaluate the change in lung function after corrective surgery for adolescent idiopathic scoliosis (AIS) using biplanar radiographs of the ribcage with 3D reconstruction? A total of 45 patients with a thoracic AIS which needed surgical correction and fusion were included in a prospective study. All patients underwent pulmonary function testing (PFT) and low-dose biplanar radiographs both preoperatively and one year after surgery. The following measurements were recorded: forced vital capacity (FVC), slow vital capacity (SVC), and total lung capacity (TLC). Rib cage volume (RCV), maximum rib hump, main thoracic curve Cobb angle (MCCA), medial-lateral and anteroposterior diameter, and T4-T12 kyphosis were calculated from 3D reconstructions of the biplanar radiographs.Aims
Methods
The aims of this systematic review were to assess the learning curve of semi-active robotic arm-assisted total hip arthroplasty (rTHA), and to compare the accuracy, patient-reported functional outcomes, complications, and survivorship between rTHA and manual total hip arthroplasty (mTHA). Searches of PubMed, Medline, and Google Scholar were performed in April 2020 in line with the Preferred Reporting Items for Systematic Review and Meta-Analysis statement. Search terms included “robotic”, “hip”, and “arthroplasty”. The criteria for inclusion were published clinical research articles reporting the learning curve for rTHA (robotic arm-assisted only) and those comparing the implantation accuracy, functional outcomes, survivorship, or complications with mTHA.Aims
Methods
The primary aim of this study was to compare the postoperative systemic inflammatory response in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic-arm assisted total knee arthroplasty (robotic TKA). Secondary aims were to compare the macroscopic soft tissue injury, femoral and tibial bone trauma, localized thermal response, and the accuracy of component positioning between the two treatment groups. This prospective randomized controlled trial included 30 patients with osteoarthritis of the knee undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localized knee temperature were collected preoperatively and postoperatively at six hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned postioning of the components in both groups.Aims
Methods
The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty. Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output.Aims
Methods
Robotic-assisted unicompartmental knee arthroplasty (UKA) promises accurate implant placement with the potential of improved survival and functional outcomes. The aim of this study was to present the current evidence for robotic-assisted UKA and describe the outcome in terms of implant positioning, range of movement (ROM), function and survival, and the types of robot and implants that are currently used. A search of PubMed and Medline was performed in October 2018 in line with the Preferred Reporting Items for Systematic Review and Meta-Analysis statement. Search terms included “robotic”, “knee”, and “surgery”. The criteria for inclusion was any study describing the use of robotic UKA and reporting implant positioning, ROM, function, and survival for clinical, cadaveric, or dry bone studies.Aims
Materials and Methods
The primary objective of this study was to compare accuracy in restoring the native centre of hip rotation in patients undergoing conventional manual total hip arthroplasty (THA) This prospective cohort study included 50 patients undergoing conventional manual THA and 25 patients receiving robotic-arm assisted THA. Patients undergoing conventional manual THA and robotic-arm assisted THA were well matched for age (mean age, 69.4 years (Objectives
Materials and Methods
In Asia and the Middle-East, people often flex their knees deeply
in order to perform activities of daily living. The purpose of this
study was to investigate the 3D kinematics of normal knees during
high-flexion activities. Our hypothesis was that the femorotibial
rotation, varus-valgus angle, translations, and kinematic pathway
of normal knees during high-flexion activities, varied according
to activity. We investigated the Aims
Materials and Methods
We investigated changes in the axial alignment of the ipsilateral
hip and knee after total hip arthroplasty (THA). We reviewed 152 patients undergoing primary THA (163 hips; 22
hips in men, 141 hips in women) without a pre-operative flexion
contracture. The mean age was 64 years (30 to 88). The diagnosis
was osteoarthritis (OA) in 151 hips (primary in 18 hips, and secondary
to dysplasia in 133) and non-OA in 12 hips. A posterolateral approach
with repair of the external rotators was used in 134 hips and an
anterior approach in 29 hips. We measured changes in leg length
and offset on radiographs, and femoral anteversion, internal rotation
of the hip and lateral patellar tilt on CT scans, pre- and post-operatively. Aims
Patients and Methods
The primary aim of this study was to determine the surgical team’s
learning curve for introducing robotic-arm assisted unicompartmental
knee arthroplasty (UKA) into routine surgical practice. The secondary
objective was to compare accuracy of implant positioning in conventional
jig-based UKA versus robotic-arm assisted UKA. This prospective single-surgeon cohort study included 60 consecutive
conventional jig-based UKAs compared with 60 consecutive robotic-arm
assisted UKAs for medial compartment knee osteoarthritis. Patients
undergoing conventional UKA and robotic-arm assisted UKA were well-matched
for baseline characteristics including a mean age of 65.5 years
(Aims
Patients and Methods
We developed a method of applying vibration to the impaction bone grafting process and assessed its effect on the mechanical properties of the impacted graft. Washed morsellised bovine femoral heads were impacted into shear test rings. A range of frequencies of vibration was tested, as measured using an accelerometer housed in a vibration chamber. Each shear test was repeated at four different normal loads to generate stress-strain curves. The Mohr-Coulomb failure envelope from which shear strength and interlocking values are derived was plotted for each test. The experiments were repeated with the addition of blood in order to replicate a saturated environment. Graft impacted with the addition of vibration at all frequencies showed improved shear strength when compared with impaction without vibration, with 60 Hz giving the largest effect. Under saturated conditions the addition of vibration was detrimental to the shear strength of the aggregate. The civil-engineering principles of particulate settlement and interlocking also apply to impaction bone grafting. Although previous studies have shown that vibration may be beneficial in impaction bone grafting on the femoral side, our study suggests that the same is not true in acetabular revision.
The three-dimensional (3D) correction of glenoid
erosion is critical to the long-term success of total shoulder replacement
(TSR). In order to characterise the 3D morphology of eroded glenoid
surfaces, we looked for a set of morphological parameters useful
for TSR planning. We defined a scapular coordinates system based
on non-eroded bony landmarks. The maximum glenoid version was measured
and specified in 3D by its orientation angle. Medialisation was
considered relative to the spino-glenoid notch. We analysed regular
CT scans of 19 normal (N) and 86 osteoarthritic (OA) scapulae. When
the maximum version of OA shoulders was higher than 10°, the orientation
was not only posterior, but extended in postero-superior (35%),
postero-inferior (6%) and anterior sectors (4%). The medialisation
of the glenoid was higher in OA than normal shoulders. The orientation
angle of maximum version appeared as a critical parameter to specify
the glenoid shape in 3D. It will be very useful in planning the
best position for the glenoid in TSR. Cite this article:
To validate the English language Forgotten Joint Score-12 (FJS-12)
as a tool to evaluate the outcome of hip and knee arthroplasty in
a United Kingdom population. All patients undergoing surgery between January and August 2014
were eligible for inclusion. Prospective data were collected from
205 patients undergoing total hip arthroplasty (THA) and 231 patients
undergoing total knee arthroplasty (TKA). Outcomes were assessed
with the FJS-12 and the Oxford Hip and Knee Scores (OHS, OKS) pre-operatively,
then at six and 12 months post-operatively. Internal consistency,
convergent validity, effect size, relative validity and ceiling
effects were determined.Aims
Patients and Methods
We present a new CT-based method which measures cover of the femoral head in both normal and dysplastic hips and allows assessment of acetabular inclination and anteversion. A clear topographical image of the head with its covered area is generated. We studied 36 normal and 39 dysplastic hips. In the normal hips the mean cover was 73% (66% to 81%), whereas in the dysplastic group it was 51% (38% to 64%). The significant advantage of this technique is that it allows the measurements to be standardised with reference to a specific anatomical plane. When this is applied to assessing cover in surgery for dysplasia of the hip it gives a clearer understanding of where the corrected hip stands in relation to normal and allows accurate assessment of inclination and anteversion.