Advertisement for orthosearch.org.uk
Results 1 - 20 of 221
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 116 - 120
1 Jan 2007
Laing AJ Dillon JP Condon E Coffey JC Street JT Wang JH McGuinness AJ Redmond HP

Post-natal vasculogenesis, the process by which vascular committed bone marrow stem cells or endothelial precursor cells migrate, differentiate and incorporate into the nacent endothelium and thereby contribute to physiological and pathological neurovascularisation, has stimulated much interest. Its contribution to neovascularisation of tumours, wound healing and revascularisation associated with ischaemia of skeletal and cardiac muscles is well established. We evaluated the responses of endothelial precursor cells in bone marrow to musculoskeletal trauma in mice. Bone marrow from six C57 Black 6 mice subjected to a standardised, closed fracture of the femur, was analysed for the combined expression of cell-surface markers stem cell antigen 1 (sca-1. +. ) and stem cell factor receptor, CD117 (c-kit. +. ) in order to identify the endothelial precursor cell population. Immunomagnetically-enriched sca-1. +. mononuclear cell (MNC. sca-1+. ) populations were then cultured and examined for functional vascular endothelial differentiation. Bone marrow MNC. sca-1+,c-kit+. counts increased almost twofold within 48 hours of the event, compared with baseline levels, before decreasing by 72 hours. Sca-1. +. mononuclear cell populations in culture from samples of bone marrow at 48 hours bound together Ulex Europus-1, and incorporated fluorescent 1,1′-dioctadecyl- 3,3,3,’3′-tetramethylindocarbocyanine perchlorate-labelled acetylated low-density lipoprotein intracellularily, both characteristics of mature endothelium. Our findings suggest that a systemic provascular response of bone marrow is initiated by musculoskeletal trauma. Its therapeutic manipulation may have implications for the potential enhancement of neovascularisation and the healing of fractures


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 123 - 130
1 Jan 2021
Lapner P Pollock JW Laneuville O Uhthoff HK Zhang T Sheikh A McIlquham K Trudel G

Aims. Despite recent advances in arthroscopic rotator cuff repair, re-tear rates remain high. New methods to improve healing rates following rotator cuff repair must be sought. Our primary objective was to determine if adjunctive bone marrow stimulation with channelling five to seven days prior to arthroscopic cuff repair would lead to higher Western Ontario Rotator Cuff (WORC) scores at 24 months postoperatively compared with no channelling. Methods. A prospective, randomized controlled trial was conducted in patients undergoing arthroscopic rotator cuff repair. Patients were randomized to receive either a percutaneous bone channelling of the rotator cuff footprint or a sham procedure under ultrasound guidance five to seven days prior to index surgery. Outcome measures included the WORC, American Shoulder and Elbow Surgeons (ASES), and Constant scores, strength, ultrasound-determined healing rates, and adverse events. Results. Overall, 94 patients were randomized to either bone channelling or a sham procedure. Statistically significant improvements in all clinical outcome scores occurred in both groups from preoperative to all timepoints (p < 0.001). Intention-to-treat analysis revealed no statistical differences in WORC scores between the two interventions at 24 months postoperatively (p = 0.690). No differences were observed in secondary outcomes at any timepoint and healing rates did not differ between groups (p = 0.186). Conclusion. Preoperative bone channelling one week prior to arthroscopic rotator cuff repair was not associated with significant improvements in WORC, ASES, Constant scores, strength, or ultrasound-determined healing rates. Cite this article: Bone Joint J 2021;103-B(1):123–130


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 3 | Pages 407 - 412
1 Apr 2002
Chang CH Stanton RP Glutting J

In 79 consecutive patients with unicameral bone cysts we compared the results of aspiration and injection of bone marrow with those of aspiration and injection of steroid. All were treated by the same protocol. The only difference was the substance injected into the cysts. The mean radiological follow-up to detect activity in the cyst was 44 months (12 to 108). Of the 79 patients, 14 received a total of 27 injections of bone marrow and 65 a total of 99 injections of steroid. Repeated injections were required in 57% of patients after bone marrow had been used and in 49% after steroid. No complications were noted in either group. In this series no advantage could be shown for the use of autogenous injection of bone marrow compared with injection of steroid in the management of unicameral bone cysts


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 4 | Pages 719 - 724
1 Jul 1999
Louisia S Stromboni M Meunier A Sedel L Petite H

Limited success in regenerating large bone defects has been achieved by bridging them with osteoconductive materials. These substitutes lack the osteogenic and osteoinductive properties of bone autograft. A direct approach would be to stimulate osteogenesis in these biomaterials by the addition of fresh bone-marrow cells (BMC). We therefore created osteoperiosteal gaps 2 cm wide in the ulna of adult rabbits and either bridged them with coral alone (CC), coral supplemented with BMC, or left them empty. Coral was chosen as a scaffold because of its good biocompatibility and resorbability. In osteoperiosteal gaps bridged with coral only, the coral was invaded chiefly by fibrous tissue. It was insufficient to produce union after two months. In defects filled with coral and BMC an increase in osteogenesis was observed and the bone surface area was significantly higher compared with defects filled with coral alone. Bony union occurred in six out of six defects filled with coral and BMC after two months. An increase in the resorption of coral was also observed, suggesting that resorbing cells or their progenitors were present in bone marrow and survived the grafting procedure. Our findings have shown that supplementation of coral with BMC increased both the resorption of material and osteogenesis in defects of a clinical significance


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 726 - 736
1 May 2010
Hee HT Ismail HD Lim CT Goh JCH Wong HK

Although success has been achieved with implantation of bone marrow mesenchymal stem cells (bMSCs) in degenerative discs, its full potential may not be achieved if the harsh environment of the degenerative disc remains. Axial distraction has been shown to increase hydration and nutrition. Combining both therapies may have a synergistic effect in reversing degenerative disc disease. In order to evaluate the effect of bMSC implantation, axial distraction and combination therapy in stimulating regeneration and retarding degeneration in degenerative discs, we first induced disc degeneration by axial loading in a rabbit model. The rabbits in the intervention groups performed better with respect to disc height, morphological grading, histological scoring and average dead cell count. The groups with distraction performed better than those without on all criteria except the average dead cell count. Our findings suggest that bMSC implantation and distraction stimulate regenerative changes in degenerative discs in a rabbit model


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 2 | Pages 289 - 294
1 Mar 2001
Im G Kim D Shin J Hyun C Cho W

In 16 mature New Zealand white rabbits mesenchymal stem cells were aspirated from the bone marrow, cultured in monolayer and implanted on to a full-thickness osteochondral defect artificially made on the patellar groove of the same rabbit. A further 13 rabbits served as a control group. The rabbits were killed after 14 weeks. Healing of the defect was investigated histologically using haematoxylin and eosin and Safranin-O staining and with immunohistochemical staining for type-II collagen. We also used a reverse transcription-polymerase chain reaction (RT-PCR) to detect mRNA of type-I and type-II collagen. The semiquantitative histological scores were significantly higher in the experimental group than in the control group (p < 0.05). In the experimental group immunohistochemical staining on newly formed cartilage was more intense for type-II collagen in the matrix and RT-PCR from regenerated cartilage detected mRNA for type-II collagen in mature chondrocytes. These findings suggest that repair of cartilage defects can be enhanced by the implantation of cultured mesenchymal stem cells


The Journal of Bone & Joint Surgery British Volume
Vol. 54-B, Issue 4 | Pages 773 - 773
1 Nov 1972
Mackenzie DH


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 5 | Pages 877 - 877
1 Sep 1997
COHEN J


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 5 | Pages 877 - 877
1 Sep 1997
SCHREUDER HWB VETH RPH


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 7 | Pages 998 - 1006
1 Jul 2012
Kodama A Kamei N Kamei G Kongcharoensombat W Ohkawa S Nakabayashi A Ochi M

For the treatment of ununited fractures, we developed a system of delivering magnetic labelled mesenchymal stromal cells (MSCs) using an extracorporeal magnetic device. In this study, we transplanted ferucarbotran-labelled and luciferase-positive bone marrow-derived MSCs into a non-healing femoral fracture rat model in the presence of a magnetic field. The biological fate of the transplanted MSCs was observed using luciferase-based bioluminescence imaging and we found that the number of MSC derived photons increased from day one to day three and thereafter decreased over time. The magnetic cell delivery system induced the accumulation of photons at the fracture site, while also retaining higher photon intensity from day three to week four. Furthermore, radiological and histological findings suggested improved callus formation and endochondral ossification. We therefore believe that this delivery system may be a promising option for bone regeneration.


The Journal of Bone & Joint Surgery British Volume
Vol. 59-B, Issue 2 | Pages 189 - 196
1 May 1977
Nade S Burwell R

This paper examines the fate of decalcified allografts (homografts) of iliac cancellous bone impregnated with autologous red marrow and implanted intermuscularly into the anterior abdominal wall of rabbits. In contrast to the findings of Urist and other workers that cortical bone decalcified with hydrochloric acid (HCl) and then freeze-dried is inductive to new bone formation in various heterotopic sites, evidence is presented that iliac bone decalcified by HCl and grafted alone to a muscular site is itself very weakly inductive to bone formation. However, when combined with autologous bone marrow the HCl-decalcified bone provides a better substrate for bone formation by marrow cells than does either undecalcified iliac bone, or iliac bone decalcified with ethylene-diamine-tetra-acetic acid. The freezing or freeze-drying of decalcified bone does not affect new bone formation when implanted alone or with autologous marrow. The differences between the cortical and cancellous bone as inductive substrates for osteogenesis are discussed and the interrelationship of bone and marrow in combined bone grafts are re-evaluated


The Journal of Bone & Joint Surgery British Volume
Vol. 55-B, Issue 2 | Pages 402 - 417
1 May 1973
Salama R Burwell RG Dickson IR

1. This paper reports a histological study of the fate of sheep and calf cancellous bone grafts impregnated with autologous red marrow of Wistar rats and implanted intramuscularly as composite xenograft-autografts for two to twelve weeks. It also includes some biochemical estimations of certain types of sheep and calf bone used to prepare these composite grafts.

2. Only one of 223 devitalised bone xenografts implanted without autologous marrow formed new bone; in contrast 216 of 223 transplanted with marrow formed new bone.

3. The new bone formed by the composite grafts is derived from the autologous marrow. There was no evidence for an inductive effect upon the marrow of the various types of xenograft bone studied as described previously for allograft bone (Burwell 1966).

4. The highest score of new bone formation was found in composite grafts based on fully deproteinised sheep iliac bone prepared at Oswestry. Statistically this score was significantly higher than those registered by composite grafts prepared from intact (frozen and freeze-dried), decalcified (frozen and freeze-dried) and Kiel sheep bone, and by Kiel and Oswestry calf bone (Table II).

5. The histological evidence reported suggests that the high score with the sheep Oswestry composite grafts is because Oswestry bone is feebly immunogenic, if at all; and that such feeble or absent immunogenicity permits more marrow cells to differentiate into osteoblasts and lay down new bone without impediment.

6. The lower scores of new bone formation in most of the undeproteinised composite grafts of sheep origin–intact frozen, intact freeze-dried and Kiel–are attributed to residual immunogenicity within the organic material of the donor bone, because each type evoked the formation of mature plasma cells.

7. The Kiel bone grafts appeared to evoke less of a plasma cell reaction and may be less immunogenic than the intact and decalcified bone xenografts.

8. The sheep Oswestry CXA's formed significantly more new bone than did the calf Oswestry CXA's. This difference may be due to the different physical properties of the bone obtained from old sheep compared with the bone obtained from a young calf.


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 880 - 887
1 Aug 2023
Onodera T Momma D Matsuoka M Kondo E Suzuki K Inoue M Higano M Iwasaki N

Aims. Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury. Methods. A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.0 to 4.0 cm. 2. ) were included in this study. UPAL gel was implanted into chondral defects after performing bone marrow stimulation technique, and assessed for up to three years postoperatively. The primary outcomes were the feasibility and safety of the procedure. The secondary outcomes were self-assessed clinical scores, arthroscopic scores, tissue biopsies, and MRI-based estimations. Results. No obvious adverse events related to UPAL gel implantation were observed. Self-assessed clinical scores, including pain, symptoms, activities of daily living, sports activity, and quality of life, were improved significantly at three years after surgery. Defect filling was confirmed using second-look arthroscopy at 72 weeks. Significantly improved MRI scores were observed from 12 to 144 weeks postoperatively. Histological examination of biopsy specimens obtained at 72 weeks after implantation revealed an extracellular matrix rich in glycosaminoglycan and type II collagen in the reparative tissue. Histological assessment yielded a mean overall International Cartilage Regeneration & Joint Preservation Society II score of 69.1 points (SD 10.4; 50 to 80). Conclusion. This study provides evidence supporting the safety of acellular UPAL gel implantation in facilitating cartilage repair. Despite being a single-arm study, it demonstrated the efficacy of UPAL gel implantation, suggesting it is an easy-to-use, one-step method of cartilage tissue repair circumventing the need to harvest donor cells. Cite this article: Bone Joint J 2023;105-B(8):880–887


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 361 - 364
1 Apr 2019
Rodeo SA

Stem cells are defined by their potential for self-renewal and the ability to differentiate into numerous cell types, including cartilage and bone cells. Although basic laboratory studies demonstrate that cell therapies have strong potential for improvement in tissue healing and regeneration, there is little evidence in the scientific literature for many of the available cell formulations that are currently offered to patients. Numerous commercial entities and ‘regenerative medicine centres’ have aggressively marketed unproven cell therapies for a wide range of medical conditions, leading to sometimes indiscriminate use of these treatments, which has added to the confusion and unpredictable outcomes. The significant variability and heterogeneity in cell formulations between different individuals makes it difficult to draw conclusions about efficacy. The ‘minimally manipulated’ preparations derived from bone marrow and adipose tissue that are currently used differ substantially from cells that are processed and prepared under defined laboratory protocols. The term ‘stem cells’ should be reserved for laboratory-purified, culture-expanded cells. The number of cells in uncultured preparations that meet these defined criteria is estimated to be approximately one in 10 000 to 20 000 (0.005% to 0.01%) in native bone marrow and 1 in 2000 in adipose tissue. It is clear that more refined definitions of stem cells are required, as the lumping together of widely diverse progenitor cell types under the umbrella term ‘mesenchymal stem cells’ has created confusion among scientists, clinicians, regulators, and our patients. Validated methods need to be developed to measure and characterize the ‘critical quality attributes’ and biological activity of a specific cell formulation. It is certain that ‘one size does not fit all’ – different cell formulations, dosing schedules, and culturing parameters will likely be required based on the tissue being treated and the desired biological target. As an alternative to the use of exogenous cells, in the future we may be able to stimulate the intrinsic vascular stem cell niche that is known to exist in many tissues. The tremendous potential of cell therapy will only be realized with further basic, translational, and clinical research. Cite this article: Bone Joint J 2019;101-B:361–364


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 207 - 212
1 Feb 2021
Hurley ET Stewart SK Kennedy JG Strauss EJ Calder J Ramasamy A

The management of symptomatic osteochondral lesions of the talus (OLTs) can be challenging. The number of ways of treating these lesions has increased considerably during the last decade, with published studies often providing conflicting, low-level evidence. This paper aims to present an up-to-date concise overview of the best evidence for the surgical treatment of OLTs. Management options are reviewed based on the size of the lesion and include bone marrow stimulation, bone grafting options, drilling techniques, biological preparations, and resurfacing. Although many of these techniques have shown promising results, there remains little high level evidence, and further large scale prospective studies and systematic reviews will be required to identify the optimal form of treatment for these lesions. Cite this article: Bone Joint J 2021;103-B(2):207–212


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1236 - 1244
1 Sep 2006
Nishimori M Deie M Kanaya A Exham H Adachi N Ochi M

Bone marrow mesenchymal stromal cells were aspirated from immature male green fluorescent protein transgenic rats and cultured in a monolayer. Four weeks after the creation of the osteochondral defect, the rats were divided into three groups of 18: the control group, treated with an intra-articular injection of phosphate-buffered saline only; the drilling group, treated with an intra-articular injection of phosphate-buffered saline with a bone marrow-stimulating procedure; and the bone marrow mesenchymal stromal cells group, treated with an intra-articular injection of bone marrow mesenchymal stromal cells plus a bone marrow-stimulating procedure. The rats were then killed at 4, 8 and 12 weeks after treatment and examined. The histological scores were significantly better in the bone marrow mesenchymal stromal cells group than in the control and drilling groups at all time points (p < 0.05). The fluorescence of the green fluorescent protein-positive cells could be observed in specimens four weeks after treatment


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 2 | Pages 222 - 226
1 Feb 2007
Cho HS Oh JH Kim H Kang HG Lee SH

Open surgery is rarely justified for the initial treatment of a unicameral bone cyst, but there is some debate concerning the relative effectiveness of closed methods. This study compared the results of steroid injection with those of autologous bone marrow grafting for the treatment of unicameral bone cysts. Between 1990 and 2001, 30 patients were treated by steroid injection and 28 by grafting with autologous bone marrow. The overall success rates were 86.7% and 92.0%, respectively (p > 0.05). The success rate after the initial procedure was 23.3% in the steroid group and 52.0% in those receiving autologous bone marrow (p < 0.05), and the respective cumulative success rates after second injections were 63.3% and 80.0% (p > 0.05). The mean number of procedures required was 2.19 (1 to 5) and 1.57 (1 to 3) (p < 0.05), the mean interval to healing was 12.5 months (4 to 32) and 14.3 months (7 to 36) (p > 0.05), and the rate of recurrence after the initial procedure was 41.7% and 13.3% in the steroid and in the autologous bone marrow groups, respectively (p < 0.05). Although the overall rates of success of both methods were similar, the steroid group had higher recurrence after a single procedure and required more injections to achieve healing


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 4 | Pages 654 - 659
1 Jul 1997
Overgaard S Søballe K Lind M Bünger C

The clinical use of hydroxyapatite (HA) coating is controversial especially in regard to the long-term performance of the coating and the effects of resorption. In each of 15 consenting patients we inserted two implants, coated with either HA or fluorapatite (FA) into the iliac crest. They were harvested at a mean of 13.6 ± 0.6 months after surgery. Histological examination showed that bone ongrowth on the HA-coated implants was significantly greater (29%) than that on the FA-coated implants. When bone was present on the coating surface the HA coating was significantly thicker than the FA coating. When bone marrow was present, the HA coating was significantly thinner than the FA coating. The reduction in coating thickness when covered by bone or bone marrow was 23.1 ± 9.7 μm for HA and 5.1 ± 1.7 μm for FA (p < 0.01) suggesting that FA is more stable than HA against resorption by bone marrow. The findings suggest that in man the osteoconductive properties of HA coating are superior to those of FA. Resorption rates for both coatings were approximately 20% of the coating thickness per year. Bone ongrowth appears to protect against resorption whereas bone marrow seems to accelerate resorption. No adverse reaction was seen in the surrounding bone


The Journal of Bone & Joint Surgery British Volume
Vol. 69-B, Issue 3 | Pages 346 - 351
1 May 1987
Saito S Inoue A Ono K

We have studied core biopsy specimens from 16 femoral heads affected by idiopathic avascular necrosis at the silent stage, when there were no clinical or radiographic manifestations but scintigraphy was positive. All the specimens showed necrosis of trabeculae and of bone marrow, but the most common and characteristic feature was evidence of old and new haemorrhage in the marrow. In the areas of intramedullary haemorrhages, trabeculae and bone marrow were completely necrotic, with a transitional area of incomplete necrosis between these areas and those without haemorrhagic lesions, where the trabeculae and bone marrow were normal. There was good correlation between necrosis and haemorrhagic episodes, and it was concluded that repeated intramedullary haemorrhage at the silent stage is probably related to the pathogenesis of idiopathic avascular necrosis of the femoral head


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 978 - 985
1 Sep 2024
Savoie III FH Delvadia BP Tate JP Winter JE Williams GH Sherman WF O’Brien MJ

Rotator cuff tears are common in middle-aged and elderly patients. Despite advances in the surgical repair of rotator cuff tears, the rates of recurrent tear remain high. This may be due to the complexity of the tendons of the rotator cuff, which contributes to an inherently hostile healing environment. During the past 20 years, there has been an increased interest in the use of biologics to complement the healing environment in the shoulder, in order to improve rotator cuff healing and reduce the rate of recurrent tears. The aim of this review is to provide a summary of the current evidence for the use of forms of biological augmentation when repairing rotator cuff tears.

Cite this article: Bone Joint J 2024;106-B(9):978–985.