Pre-operative planning for total hip replacement
(THR) is challenging in hips with severe acetabular deformities, including
those with a hypoplastic acetabulum or severe defects and in the
presence of arthrodesis or ankylosis. We evaluated whether a Rapid
Prototype (RP) model, which is a life-sized reproduction based on
three-dimensional CT scans, can determine the feasibility of THR
and provide information about the size and position of the acetabular component
in severe acetabular deformities. THR was planned using an RP model
in 21 complex hips in five men (five hips) and 16 women (16 hips)
with a mean age of 47.7 years (24 to 70) at operation. An acetabular
component was implanted successfully and THR completed in all hips.
The acetabular component used was within 2 mm of the predicted size
in 17 hips (80.9%). All of the acetabular components and femoral
stems had radiological evidence of bone ingrowth and stability at
the final follow-up, without any detectable wear or peri-prosthetic
osteolysis. The RP model allowed a simulated procedure pre-operatively
and was helpful in determining the feasibility of THR pre-operatively,
and to decide on implant type, size and position in complex THRs. Cite this article:
This study aimed to analyze the accuracy and errors associated with 3D-printed, patient-specific resection guides (3DP-PSRGs) used for bone tumour resection. We retrospectively reviewed 29 bone tumour resections that used 3DP-PSRGs based on 3D CT and 3D MRI. We evaluated the resection amount errors and resection margin errors relative to the preoperative plans. Guide-fitting errors and guide distortion were evaluated intraoperatively and one month postoperatively, respectively. We categorized each of these error types into three grades (grade 1, < 1 mm; grade 2, 1 to 3 mm; and grade 3, > 3 mm) to evaluate the overall accuracy.Aims
Methods