Advertisement for orthosearch.org.uk
Results 1 - 20 of 37
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 203 - 211
1 Feb 2024
Park JH Won J Kim H Kim Y Kim S Han I

Aims. This study aimed to compare the performance of survival prediction models for bone metastases of the extremities (BM-E) with pathological fractures in an Asian cohort, and investigate patient characteristics associated with survival. Methods. This retrospective cohort study included 469 patients, who underwent surgery for BM-E between January 2009 and March 2022 at a tertiary hospital in South Korea. Postoperative survival was calculated using the PATHFx3.0, SPRING13, OPTIModel, SORG, and IOR models. Model performance was assessed with area under the curve (AUC), calibration curve, Brier score, and decision curve analysis. Cox regression analyses were performed to evaluate the factors contributing to survival. Results. The SORG model demonstrated the highest discriminatory accuracy with AUC (0.80 (95% confidence interval (CI) 0.76 to 0.85)) at 12 months. In calibration analysis, the PATHfx3.0 and OPTIModel models underestimated survival, while the SPRING13 and IOR models overestimated survival. The SORG model exhibited excellent calibration with intercepts of 0.10 (95% CI -0.13 to 0.33) at 12 months. The SORG model also had lower Brier scores than the null score at three and 12 months, indicating good overall performance. Decision curve analysis showed that all five survival prediction models provided greater net benefit than the default strategy of operating on either all or no patients. Rapid growth cancer and low serum albumin levels were associated with three-, six-, and 12-month survival. Conclusion. State-of-art survival prediction models for BM-E (PATHFx3.0, SPRING13, OPTIModel, SORG, and IOR models) are useful clinical tools for orthopaedic surgeons in the decision-making process for the treatment in Asian patients, with SORG models offering the best predictive performance. Rapid growth cancer and serum albumin level are independent, statistically significant factors contributing to survival following surgery of BM-E. Further refinement of survival prediction models will bring about informed and patient-specific treatment of BM-E. Cite this article: Bone Joint J 2024;106-B(2):203–211


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 97 - 102
1 Jan 2022
Hijikata Y Kamitani T Nakahara M Kumamoto S Sakai T Itaya T Yamazaki H Ogawa Y Kusumegi A Inoue T Yoshida T Furue N Fukuhara S Yamamoto Y

Aims. To develop and internally validate a preoperative clinical prediction model for acute adjacent vertebral fracture (AVF) after vertebral augmentation to support preoperative decision-making, named the after vertebral augmentation (AVA) score. Methods. In this prognostic study, a multicentre, retrospective single-level vertebral augmentation cohort of 377 patients from six Japanese hospitals was used to derive an AVF prediction model. Backward stepwise selection (p < 0.05) was used to select preoperative clinical and imaging predictors for acute AVF after vertebral augmentation for up to one month, from 14 predictors. We assigned a score to each selected variable based on the regression coefficient and developed the AVA scoring system. We evaluated sensitivity and specificity for each cut-off, area under the curve (AUC), and calibration as diagnostic performance. Internal validation was conducted using bootstrapping to correct the optimism. Results. Of the 377 patients used for model derivation, 58 (15%) had an acute AVF postoperatively. The following preoperative measures on multivariable analysis were summarized in the five-point AVA score: intravertebral instability (≥ 5 mm), focal kyphosis (≥ 10°), duration of symptoms (≥ 30 days), intravertebral cleft, and previous history of vertebral fracture. Internal validation showed a mean optimism of 0.019 with a corrected AUC of 0.77. A cut-off of ≤ one point was chosen to classify a low risk of AVF, for which only four of 137 patients (3%) had AVF with 92.5% sensitivity and 45.6% specificity. A cut-off of ≥ four points was chosen to classify a high risk of AVF, for which 22 of 38 (58%) had AVF with 41.5% sensitivity and 94.5% specificity. Conclusion. In this study, the AVA score was found to be a simple preoperative method for the identification of patients at low and high risk of postoperative acute AVF. This model could be applied to individual patients and could aid in the decision-making before vertebral augmentation. Cite this article: Bone Joint J 2022;104-B(1):97–102


The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1490 - 1496
1 Nov 2013
Ong P Pua Y

Early and accurate prediction of hospital length-of-stay (LOS) in patients undergoing knee replacement is important for economic and operational reasons. Few studies have systematically developed a multivariable model to predict LOS. We performed a retrospective cohort study of 1609 patients aged ≥ 50 years who underwent elective, primary total or unicompartmental knee replacements. Pre-operative candidate predictors included patient demographics, knee function, self-reported measures, surgical factors and discharge plans. In order to develop the model, multivariable regression with bootstrap internal validation was used. The median LOS for the sample was four days (interquartile range 4 to 5). Statistically significant predictors of longer stay included older age, greater number of comorbidities, less knee flexion range of movement, frequent feelings of being down and depressed, greater walking aid support required, total (versus unicompartmental) knee replacement, bilateral surgery, low-volume surgeon, absence of carer at home, and expectation to receive step-down care. For ease of use, these ten variables were used to construct a nomogram-based prediction model which showed adequate predictive accuracy (optimism-corrected R. 2. = 0.32) and calibration. If externally validated, a prediction model using easily and routinely obtained pre-operative measures may be used to predict absolute LOS in patients following knee replacement and help to better manage these patients. . Cite this article: Bone Joint J 2013;95-B:1490–6


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 503 - 509
1 Apr 2015
Maempel JF Clement ND Brenkel IJ Walmsley PJ

This study demonstrates a significant correlation between the American Knee Society (AKS) Clinical Rating System and the Oxford Knee Score (OKS) and provides a validated prediction tool to estimate score conversion.

A total of 1022 patients were prospectively clinically assessed five years after TKR and completed AKS assessments and an OKS questionnaire. Multivariate regression analysis demonstrated significant correlations between OKS and the AKS knee and function scores but a stronger correlation (r = 0.68, p < 0.001) when using the sum of the AKS knee and function scores. Addition of body mass index and age (other statistically significant predictors of OKS) to the algorithm did not significantly increase the predictive value.

The simple regression model was used to predict the OKS in a group of 236 patients who were clinically assessed nine to ten years after TKR using the AKS system. The predicted OKS was compared with actual OKS in the second group. Intra-class correlation demonstrated excellent reliability (r = 0.81, 95% confidence intervals 0.75 to 0.85) for the combined knee and function score when used to predict OKS.

Our findings will facilitate comparison of outcome data from studies and registries using either the OKS or the AKS scores and may also be of value for those undertaking meta-analyses and systematic reviews.

Cite this article: Bone Joint J 2015;97-B:503–9.


The Bone & Joint Journal
Vol. 104-B, Issue 4 | Pages 486 - 494
4 Apr 2022
Liu W Sun Z Xiong H Liu J Lu J Cai B Wang W Fan C

Aims. The aim of this study was to develop and internally validate a prognostic nomogram to predict the probability of gaining a functional range of motion (ROM ≥ 120°) after open arthrolysis of the elbow in patients with post-traumatic stiffness of the elbow. Methods. We developed the Shanghai Prediction Model for Elbow Stiffness Surgical Outcome (SPESSO) based on a dataset of 551 patients who underwent open arthrolysis of the elbow in four institutions. Demographic and clinical characteristics were collected from medical records. The least absolute shrinkage and selection operator regression model was used to optimize the selection of relevant features. Multivariable logistic regression analysis was used to build the SPESSO. Its prediction performance was evaluated using the concordance index (C-index) and a calibration graph. Internal validation was conducted using bootstrapping validation. Results. BMI, the duration of stiffness, the preoperative ROM, the preoperative intensity of pain, and grade of post-traumatic osteoarthritis of the elbow were identified as predictors of outcome and incorporated to construct the nomogram. SPESSO displayed good discrimination with a C-index of 0.73 (95% confidence interval 0.64 to 0.81). A high C-index value of 0.70 could still be reached in the interval validation. The calibration graph showed good agreement between the nomogram prediction and the outcome. Conclusion. The newly developed SPESSO is a valid and convenient model which can be used to predict the outcome of open arthrolysis of the elbow. It could assist clinicians in counselling patients regarding the choice and expectations of treatment. Cite this article: Bone Joint J 2022;104-B(4):486–494


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 469 - 478
1 Mar 2021
Garland A Bülow E Lenguerrand E Blom A Wilkinson M Sayers A Rolfson O Hailer NP

Aims. To develop and externally validate a parsimonious statistical prediction model of 90-day mortality after elective total hip arthroplasty (THA), and to provide a web calculator for clinical usage. Methods. We included 53,099 patients with cemented THA due to osteoarthritis from the Swedish Hip Arthroplasty Registry for model derivation and internal validation, as well as 125,428 patients from England and Wales recorded in the National Joint Register for England, Wales, Northern Ireland, the Isle of Man, and the States of Guernsey (NJR) for external model validation. A model was developed using a bootstrap ranking procedure with a least absolute shrinkage and selection operator (LASSO) logistic regression model combined with piecewise linear regression. Discriminative ability was evaluated by the area under the receiver operating characteristic curve (AUC). Calibration belt plots were used to assess model calibration. Results. A main effects model combining age, sex, American Society for Anesthesiologists (ASA) class, the presence of cancer, diseases of the central nervous system, kidney disease, and diagnosed obesity had good discrimination, both internally (AUC = 0.78, 95% confidence interval (CI) 0.75 to 0.81) and externally (AUC = 0.75, 95% CI 0.73 to 0.76). This model was superior to traditional models based on the Charlson (AUC = 0.66, 95% CI 0.62 to 0.70) and Elixhauser (AUC = 0.64, 95% CI 0.59 to 0.68) comorbidity indices. The model was well calibrated for predicted probabilities up to 5%. Conclusion. We developed a parsimonious model that may facilitate individualized risk assessment prior to one of the most common surgical interventions. We have published a web calculator to aid clinical decision-making. Cite this article: Bone Joint J 2021;103-B(3):469–478


The Bone & Joint Journal
Vol. 104-B, Issue 12 | Pages 1292 - 1303
1 Dec 2022
Polisetty TS Jain S Pang M Karnuta JM Vigdorchik JM Nawabi DH Wyles CC Ramkumar PN

Literature surrounding artificial intelligence (AI)-related applications for hip and knee arthroplasty has proliferated. However, meaningful advances that fundamentally transform the practice and delivery of joint arthroplasty are yet to be realized, despite the broad range of applications as we continue to search for meaningful and appropriate use of AI. AI literature in hip and knee arthroplasty between 2018 and 2021 regarding image-based analyses, value-based care, remote patient monitoring, and augmented reality was reviewed. Concerns surrounding meaningful use and appropriate methodological approaches of AI in joint arthroplasty research are summarized. Of the 233 AI-related orthopaedics articles published, 178 (76%) constituted original research, while the rest consisted of editorials or reviews. A total of 52% of original AI-related research concerns hip and knee arthroplasty (n = 92), and a narrative review is described. Three studies were externally validated. Pitfalls surrounding present-day research include conflating vernacular (“AI/machine learning”), repackaging limited registry data, prematurely releasing internally validated prediction models, appraising model architecture instead of inputted data, withholding code, and evaluating studies using antiquated regression-based guidelines. While AI has been applied to a variety of hip and knee arthroplasty applications with limited clinical impact, the future remains promising if the question is meaningful, the methodology is rigorous and transparent, the data are rich, and the model is externally validated. Simple checkpoints for meaningful AI adoption include ensuring applications focus on: administrative support over clinical evaluation and management; necessity of the advanced model; and the novelty of the question being answered. Cite this article: Bone Joint J 2022;104-B(12):1292–1303


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 963 - 971
1 Aug 2022
Sun Z Liu W Liu H Li J Hu Y Tu B Wang W Fan C

Aims. Heterotopic ossification (HO) is a common complication after elbow trauma and can cause severe upper limb disability. Although multiple prognostic factors have been reported to be associated with the development of post-traumatic HO, no model has yet been able to combine these predictors more succinctly to convey prognostic information and medical measures to patients. Therefore, this study aimed to identify prognostic factors leading to the formation of HO after surgery for elbow trauma, and to establish and validate a nomogram to predict the probability of HO formation in such particular injuries. Methods. This multicentre case-control study comprised 200 patients with post-traumatic elbow HO and 229 patients who had elbow trauma but without HO formation between July 2019 and December 2020. Features possibly associated with HO formation were obtained. The least absolute shrinkage and selection operator regression model was used to optimize feature selection. Multivariable logistic regression analysis was applied to build the new nomogram: the Shanghai post-Traumatic Elbow Heterotopic Ossification Prediction model (STEHOP). STEHOP was validated by concordance index (C-index) and calibration plot. Internal validation was conducted using bootstrapping validation. Results. Male sex, obesity, open wound, dislocations, late definitive surgical treatment, and lack of use of non-steroidal anti-inflammatory drugs were identified as adverse predictors and incorporated to construct the STEHOP model. It displayed good discrimination with a C-index of 0.80 (95% confidence interval 0.75 to 0.84). A high C-index value of 0.77 could still be reached in the internal validation. The calibration plot showed good agreement between nomogram prediction and observed outcomes. Conclusion. The newly developed STEHOP model is a valid and convenient instrument to predict HO formation after surgery for elbow trauma. It could assist clinicians in counselling patients regarding treatment expectations and therapeutic choices. Cite this article: Bone Joint J 2022;104-B(8):963–971


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1111 - 1117
1 Oct 2024
Makaram NS Becher H Oag E Heinz NR McCann CJ Mackenzie SP Robinson CM

Aims. The risk factors for recurrent instability (RI) following a primary traumatic anterior shoulder dislocation (PTASD) remain unclear. In this study, we aimed to determine the rate of RI in a large cohort of patients managed nonoperatively after PTASD and to develop a clinical prediction model. Methods. A total of 1,293 patients with PTASD managed nonoperatively were identified from a trauma database (mean age 23.3 years (15 to 35); 14.3% female). We assessed the prevalence of RI, and used multivariate regression modelling to evaluate which demographic- and injury-related factors were independently predictive for its occurrence. Results. The overall rate of RI at a mean follow-up of 34.4 months (SD 47.0) was 62.8% (n = 812), with 81.0% (n = 658) experiencing their first recurrence within two years of PTASD. The median time for recurrence was 9.8 months (IQR 3.9 to 19.4). Independent predictors increasing risk of RI included male sex (p < 0.001), younger age at PTASD (p < 0.001), participation in contact sport (p < 0.001), and the presence of a bony Bankart (BB) lesion (p = 0.028). Greater tuberosity fracture (GTF) was protective (p < 0.001). However, the discriminative ability of the resulting predictive model for two-year risk of RI was poor (area under the curve (AUC) 0.672). A subset analysis excluding identifiable radiological predictors of BB and GTF worsened the predictive ability (AUC 0.646). Conclusion. This study clarifies the prevalence and risk factors for RI following PTASD in a large, unselected patient cohort. Although these data permitted the development of a predictive tool for RI, its discriminative ability was poor. Predicting RI remains challenging, and as-yet-undetermined risk factors may be important in determining the risk. Cite this article: Bone Joint J 2024;106-B(10):1111–1117


The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 254 - 260
1 Feb 2020
Cheung JPY Cheung PWH

Aims. The aim of this study was to assess whether supine flexibility predicts the likelihood of curve progression in patients with adolescent idiopathic scoliosis (AIS) undergoing brace treatment. Methods. This was a retrospective analysis of patients with AIS prescribed with an underarm brace between September 2008 to April 2013 and followed up until 18 years of age or required surgery. Patients with structural proximal curves that preclude underarm bracing, those who were lost to follow-up, and those who had poor compliance to bracing (<16 hours a day) were excluded. The major curve Cobb angle, curve type, and location were measured on the pre-brace standing posteroanterior (PA) radiograph, supine whole spine radiograph, initial in-brace standing PA radiograph, and the post-brace weaning standing PA radiograph. Validation of the previous in-brace Cobb angle regression model was performed. The outcome of curve progression post-bracing was tested using a logistic regression model. The supine flexibility cut-off for curve progression was analyzed with receiver operating characteristic curve. Results. A total of 586 patients with mean age of 12.6 years (SD 1.2) remained for analysis after exclusion. The baseline Cobb angle was similar for thoracic major curves (31.6° (SD 3.8°)) and lumbar major curves (30.3° (SD 3.7°)). Curve progression was more common in the thoracic curves than lumbar curves with mean final Cobb angles of 40.5° (SD 12.5°) and 31.8° (SD 9.8°) respectively. This dataset matched the prediction model for in-brace Cobb angle with less mean absolute error in thoracic curves (0.61) as compared to lumbar curves (1.04). Reduced age and Risser stage, thoracic curves, increased pre-brace Cobb angle, and reduced correction and flexibility rates predicted increased likelihood of curve progression. Flexibility rate of more than 28% has likelihood of preventing curve progression with bracing. Conclusion. Supine radiographs provide satisfactory prediction for in-brace correction and post-bracing curve magnitude. The flexibility of the curve is a guide to determine the likelihood for brace success. Cite this article: Bone Joint J 2020;102-B(2):254–260


The Bone & Joint Journal
Vol. 101-B, Issue 2 | Pages 154 - 161
1 Feb 2019
Cheung PWH Fong HK Wong CS Cheung JPY

Aims. The aim of this study was to determine the influence of developmental spinal stenosis (DSS) on the risk of re-operation at an adjacent level. Patients and Methods. This was a retrospective study of 235 consecutive patients who had undergone decompression-only surgery for lumbar spinal stenosis and had a minimum five-year follow-up. There were 106 female patients (45.1%) and 129 male patients (54.9%), with a mean age at surgery of 66.8 years (. sd. 11.3). We excluded those with adult deformity and spondylolisthesis. Presenting symptoms, levels operated on initially and at re-operation were studied. MRI measurements included the anteroposterior diameter of the bony spinal canal, the degree of disc degeneration, and the thickness of the ligamentum flavum. DSS was defined by comparative measurements of the bony spinal canal. Risk factors for re-operation at the adjacent level were determined and included in a multivariate stepwise logistic regression for prediction modelling. Odds ratios (ORs) with 95% confidence intervals were calculated. Results. Of the 235 patients, 21.7% required re-operation at an adjacent segment. Re-operation at an adjacent segment was associated with DSS (p = 0.026), the number of levels decompressed (p = 0.008), and age at surgery (p = 0.013). Multivariate regression model (p < 0.001) controlled for other confounders showed that DSS was a significant predictor of re-operation at an adjacent segment, with an adjusted OR of 3.93. Conclusion. Patients with DSS who have undergone lumbar spinal decompression are 3.9 times more likely to undergo future surgery at an adjacent level. This is a poor prognostic indicator that can be identified prior to index decompression surgery


The Bone & Joint Journal
Vol. 99-B, Issue 4 | Pages 516 - 521
1 Apr 2017
Willeumier JJ van der Hoeven NMA Bollen L Willems LNA Fiocco M van der Linden YM Dijkstra PDS

Aims. This study aims to assess first, whether mutations in the epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma (kRAS) genes are associated with overall survival (OS) in patients who present with symptomatic bone metastases from non-small cell lung cancer (NSCLC) and secondly, whether mutation status should be incorporated into prognostic models that are used when deciding on the appropriate palliative treatment for symptomatic bone metastases. Patients and Methods. We studied 139 patients with NSCLC treated between 2007 and 2014 for symptomatic bone metastases and whose mutation status was known. The association between mutation status and overall survival was analysed and the results applied to a recently published prognostic model to determine whether including the mutation status would improve its discriminatory power. Results. The median OS was 3.9 months (95% confidence interval (CI) 2.1 to 5.7). Patients with EGFR (15%) or kRAS mutations (34%) had a median OS of 17.3 months (95% CI 12.7 to 22.0) and 1.8 months (95% CI 1.0 to 2.7), respectively. Compared with EGFR-positive patients, EGFR-negative patients had a 2.5 times higher risk of death (95% CI 1.5 to 4.2). Incorporating EGFR mutation status in the prognostic model improved its discriminatory power. Conclusion. Survival prediction models for patients with symptomatic bone metastases are used to determine the most appropriate (surgical) treatment for painful or fractured lesions. This study shows that NSCLC should not be regarded as a single entity in such models. Cite this article: Bone Joint J 2017;99-B:516–21


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 627 - 632
1 May 2007
Ramamurthy C Cutler L Nuttall D Simison AJM Trail IA Stanley JK

This study identified variables which influence the outcome of surgical management on 126 ununited scaphoid fractures managed by internal fixation and non-vascular bone grafting. The site of fracture was defined by a new method: the ratio of the length of the proximal fragment to the sum of the lengths of both fragments, calculated using specific views in the plain radiographs. Bone healing occurred in 71% (89) of cases. Only the site of nonunion (p = 1 × 10. −6. ) and the delay to surgery (p = 0.001) remained significant on multivariate analysis. The effect of surgical delay on the probability of union increased as the fracture site moved proximally. A prediction model was produced by stepwise logistic regression analysis, enabling the surgeon to predict the success of surgery where the site of the nonunion and delay to surgery is known


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 702 - 710
1 Jun 2023
Yeramosu T Ahmad W Bashir A Wait J Bassett J Domson G

Aims

The aim of this study was to identify factors associated with five-year cancer-related mortality in patients with limb and trunk soft-tissue sarcoma (STS) and develop and validate machine learning algorithms in order to predict five-year cancer-related mortality in these patients.

Methods

Demographic, clinicopathological, and treatment variables of limb and trunk STS patients in the Surveillance, Epidemiology, and End Results Program (SEER) database from 2004 to 2017 were analyzed. Multivariable logistic regression was used to determine factors significantly associated with five-year cancer-related mortality. Various machine learning models were developed and compared using area under the curve (AUC), calibration, and decision curve analysis. The model that performed best on the SEER testing data was further assessed to determine the variables most important in its predictive capacity. This model was externally validated using our institutional dataset.


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 412 - 418
1 Apr 2024
Alqarni AG Nightingale J Norrish A Gladman JRF Ollivere B

Aims

Frailty greatly increases the risk of adverse outcome of trauma in older people. Frailty detection tools appear to be unsuitable for use in traumatically injured older patients. We therefore aimed to develop a method for detecting frailty in older people sustaining trauma using routinely collected clinical data.

Methods

We analyzed prospectively collected registry data from 2,108 patients aged ≥ 65 years who were admitted to a single major trauma centre over five years (1 October 2015 to 31 July 2020). We divided the sample equally into two, creating derivation and validation samples. In the derivation sample, we performed univariate analyses followed by multivariate regression, starting with 27 clinical variables in the registry to predict Clinical Frailty Scale (CFS; range 1 to 9) scores. Bland-Altman analyses were performed in the validation cohort to evaluate any biases between the Nottingham Trauma Frailty Index (NTFI) and the CFS.


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 688 - 695
1 Jul 2024
Farrow L Zhong M Anderson L

Aims

To examine whether natural language processing (NLP) using a clinically based large language model (LLM) could be used to predict patient selection for total hip or total knee arthroplasty (THA/TKA) from routinely available free-text radiology reports.

Methods

Data pre-processing and analyses were conducted according to the Artificial intelligence to Revolutionize the patient Care pathway in Hip and knEe aRthroplastY (ARCHERY) project protocol. This included use of de-identified Scottish regional clinical data of patients referred for consideration of THA/TKA, held in a secure data environment designed for artificial intelligence (AI) inference. Only preoperative radiology reports were included. NLP algorithms were based on the freely available GatorTron model, a LLM trained on over 82 billion words of de-identified clinical text. Two inference tasks were performed: assessment after model-fine tuning (50 Epochs and three cycles of k-fold cross validation), and external validation.


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1754 - 1758
1 Dec 2021
Farrow L Zhong M Ashcroft GP Anderson L Meek RMD

There is increasing popularity in the use of artificial intelligence and machine-learning techniques to provide diagnostic and prognostic models for various aspects of Trauma & Orthopaedic surgery. However, correct interpretation of these models is difficult for those without specific knowledge of computing or health data science methodology. Lack of current reporting standards leads to the potential for significant heterogeneity in the design and quality of published studies. We provide an overview of machine-learning techniques for the lay individual, including key terminology and best practice reporting guidelines.

Cite this article: Bone Joint J 2021;103-B(12):1754–1758.


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 909 - 910
1 Aug 2022
Vigdorchik JM Jang SJ Taunton MJ Haddad FS


The Bone & Joint Journal
Vol. 104-B, Issue 9 | Pages 1011 - 1016
1 Sep 2022
Acem I van de Sande MAJ

Prediction tools are instruments which are commonly used to estimate the prognosis in oncology and facilitate clinical decision-making in a more personalized manner. Their popularity is shown by the increasing numbers of prediction tools, which have been described in the medical literature. Many of these tools have been shown to be useful in the field of soft-tissue sarcoma of the extremities (eSTS). In this annotation, we aim to provide an overview of the available prediction tools for eSTS, provide an approach for clinicians to evaluate the performance and usefulness of the available tools for their own patients, and discuss their possible applications in the management of patients with an eSTS.

Cite this article: Bone Joint J 2022;104-B(9):1011–1016.


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1442 - 1448
1 Sep 2021
McDonnell JM Evans SR McCarthy L Temperley H Waters C Ahern D Cunniffe G Morris S Synnott K Birch N Butler JS

In recent years, machine learning (ML) and artificial neural networks (ANNs), a particular subset of ML, have been adopted by various areas of healthcare. A number of diagnostic and prognostic algorithms have been designed and implemented across a range of orthopaedic sub-specialties to date, with many positive results. However, the methodology of many of these studies is flawed, and few compare the use of ML with the current approach in clinical practice. Spinal surgery has advanced rapidly over the past three decades, particularly in the areas of implant technology, advanced surgical techniques, biologics, and enhanced recovery protocols. It is therefore regarded an innovative field. Inevitably, spinal surgeons will wish to incorporate ML into their practice should models prove effective in diagnostic or prognostic terms. The purpose of this article is to review published studies that describe the application of neural networks to spinal surgery and which actively compare ANN models to contemporary clinical standards allowing evaluation of their efficacy, accuracy, and relatability. It also explores some of the limitations of the technology, which act to constrain the widespread adoption of neural networks for diagnostic and prognostic use in spinal care. Finally, it describes the necessary considerations should institutions wish to incorporate ANNs into their practices. In doing so, the aim of this review is to provide a practical approach for spinal surgeons to understand the relevant aspects of neural networks.

Cite this article: Bone Joint J 2021;103-B(9):1442–1448.