Accurate placement of the acetabular component during total hip
arthroplasty (THA) is an important factor in the success of the
procedure. However, the reported accuracy varies greatly and is
dependent upon whether free hand or navigated techniques are used.
The aim of this study was to assess the accuracy of an instrument
system that incorporates 3D printed, patient-specific guides designed
to optimise the placement of the acetabular component. A total of 100 consecutive patients were prospectively enrolled
and the accuracy of placement of the acetabular component was measured
using post-operative CT scans.Aims
Patients and Methods
This is a multicentre, non-inventor, prospective observational study of 503 INFINITY fixed bearing total ankle arthroplasties (TAAs). We report our early experience, complications, and radiological and functional outcomes. Patients were recruited from 11 specialist centres between June 2016 and November 2019. Demographic, radiological, and functional outcome data (Ankle Osteoarthritis Scale, Manchester Oxford Questionnaire, and EuroQol five-dimension five-level score) were collected preoperatively, at six months, one year, and two years. The Canadian Orthopaedic Foot and Ankle Society (COFAS) grading system was used to stratify deformity. Early and late complications and reoperations were recorded as adverse events. Radiographs were assessed for lucencies, cysts, and/or subsidence.Aims
Methods
Iliac wing (Type I) and iliosacral (Type I/IV) pelvic resections for a primary bone tumour create a large segmental defect in the pelvic ring. The management of this defect is controversial as the surgeon may choose to reconstruct it or not. When no reconstruction is undertaken, the residual ilium collapses back onto the remaining sacrum forming an iliosacral pseudarthrosis. The aim of this study was to evaluate the long-term oncological outcome, complications, and functional outcome after pelvic resection without reconstruction. Between 1989 and 2015, 32 patients underwent a Type I or Type I/IV pelvic resection without reconstruction for a primary bone tumour. There were 21 men and 11 women with a mean age of 35 years (15 to 85). The most common diagnosis was chondrosarcoma (50%, n = 16). Local recurrence-free, metastasis-free, and overall survival were assessed using the Kaplan-Meier method. Patient function was evaluated using the Musculoskeletal Tumour Society (MSTS) and Toronto Extremity Salvage Score (TESS).Aims
Methods
The cause of dissatisfaction following total
knee arthroplasty (TKA) remains elusive. Much attention has been
focused on static mechanical alignment as a basis for surgical success and
optimising outcomes. More recently, research on both normal and
osteoarthritic knees, as well as kinematically aligned TKAs, has
suggested that other specific and dynamic factors may be more important
than a generic target of 0 ± 3º of a neutral axis. Consideration
of these other variables is necessary to understand ideal targets
and move beyond generic results. Cite this article:
Patient specific cutting guides generated by
preoperative Magnetic Resonance Imaging (MRI) of the patient’s extremity
have been proposed as a method of improving the consistency of Total
Knee Arthroplasty (TKA) alignment and adding efficiency to the operative
procedure. The cost of this option was evaluated by quantifying the
savings from decreased operative time and instrument processing
costs compared to the additional cost of the MRI and the guide.
Coronal plane alignment was measured in an unselected consecutive
series of 200 TKAs, 100 with standard instrumentation and 100 with
custom cutting guides. While the cutting guides had significantly lower
total operative time and instrument processing time, the estimated
$322 savings was overwhelmed by the $1,500 additional cost of the
MRI and the cutting guide. All measures of coronal plane alignment
were equivalent between the two groups. The data does not currently
support the proposition that patient specific guides add value to
TKA.
Smart trials are total knee tibial trial liners
with load bearing and alignment sensors that will graphically show quantitative
compartment load-bearing forces and component track patterns. These
values will demonstrate asymmetrical ligament balancing and misalignments
with the medial retinaculum temporarily closed. Currently surgeons
use feel and visual estimation of imbalance to assess soft-tissue
balancing and tracking with the medial retinaculum open, which results
in lower medial compartment loads and a wider anteroposterior tibial
tracking pattern. The sensor trial will aid the total knee replacement
surgeon in performing soft-tissue balancing by providing quantitative
visual feedback of changes in forces while performing the releases
incrementally. Initial experience using a smart tibial trial is
presented.