Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 93 - 97
1 Jan 2012
Lee JH Lee J Park JW Shin YH

In patients with osteoporosis there is always a strong possibility that pedicle screws will loosen. This makes it difficult to select the appropriate osteoporotic patient for a spinal fusion. The purpose of this study was to determine the correlation between bone mineral density (BMD) and the magnitude of torque required to insert a pedicle screw. To accomplish this, 181 patients with degenerative disease of the lumbar spine were studied prospectively. Each underwent dual-energy x-ray absorptiometry (DEXA) and intra-operative measurement of the torque required to insert each pedicle screw. The levels of torque generated in patients with osteoporosis and osteopenia were significantly lower than those achieved in normal patients. Positive correlations were observed between BMD and T-value at the instrumented lumbar vertebrae, mean BMD and mean T-value of the lumbar vertebrae, and mean BMD and mean T-value of the proximal femur. The predictive torque (Nm) generated during pedicle screw insertion was [-0.127 + 1.62 × (BMD at the corresponding lumbar vertebrae)], as measured by linear regression analysis. The positive correlation between BMD and the maximum torque required to insert a pedicle screw suggests that pre-operative assessment of BMD may be useful in determining the ultimate strength of fixation of a device, as well as the number of levels that need to be fixed with pedicle screws in patients who are suspected of having osteoporosis.


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 3 | Pages 387 - 391
1 Apr 2002
Sandén B Olerud C Petrén-Mallmin M Larsson S

We investigated the effects of hydroxyapatite (HA) coating on the purchase of pedicle screws. A total of 23 consecutive patients undergoing lumbar fusion was randomly assigned to one of three treatment groups. The first received uncoated stainless-steel screws, the second screws which were partly coated with HA, and the third screws which were fully coated. The insertion torque was recorded. After 11 to 16 months, 21 screws had been extracted. The extraction torque was recorded. Radiographs were taken to assess fusion and to detect loosening of the screws. At removal, the extraction torques exceeded the upper limit of the torque wrench (600 Ncm) for many HA-coated screws. The calculated mean extraction torque was 29 ± 36 Ncm for the uncoated group, 447 ± 114 Ncm for the partly-coated group and 574 ± 52 Ncm for the fully-coated group. There were significant differences between all three groups (p < 0.001). There were more radiolucent zones surrounding the uncoated screws than the HA-coated screws (p < 0.001). HA coating of pedicle screws resulted in improved fixation with reduced risk of loosening of the screws


The Bone & Joint Journal
Vol. 101-B, Issue 5 | Pages 512 - 521
1 May 2019
Carter TH Duckworth AD White TO

Abstract

The medial malleolus, once believed to be the primary stabilizer of the ankle, has been the topic of conflicting clinical and biomechanical data for many decades. Despite the relevant surgical anatomy being understood for almost 40 years, the optimal treatment of medial malleolar fractures remains unclear, whether the injury occurs in isolation or as part of an unstable bi- or trimalleolar fracture configuration. Traditional teaching recommends open reduction and fixation of medial malleolar fractures that are part of an unstable injury. However, there is recent evidence to suggest that nonoperative management of well-reduced fractures may result in equivalent outcomes, but without the morbidity associated with surgery. This review gives an update on the relevant anatomy and classification systems for medial malleolar fractures and an overview of the current literature regarding their management, including surgical approaches and the choice of implants.

Cite this article: Bone Joint J 2019;101-B:512–521.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 8 | Pages 1061 - 1065
1 Aug 2010
Cho W Cho SK Wu C

There are three basic concepts that are important to the biomechanics of pedicle screw-based instrumentation. First, the outer diameter of the screw determines pullout strength, while the inner diameter determines fatigue strength. Secondly, when inserting a pedicle screw, the dorsal cortex of the spine should not be violated and the screws on each side should converge and be of good length. Thirdly, fixation can be augmented in cases of severe osteoporosis or revision.

A trajectory parallel or caudal to the superior endplate can minimise breakage of the screw from repeated axial loading. Straight insertion of the pedicle screw in the mid-sagittal plane provides the strongest stability.

Rotational stability can be improved by adding transverse connectors. The indications for their use include anterior column instability, and the correction of rotational deformity.


The Bone & Joint Journal
Vol. 98-B, Issue 5 | Pages 715 - 720
1 May 2016
Mifsud M Abela M Wilson NIL

Aims

Although atlantoaxial rotatory fixation (AARF) is a common cause of torticollis in children, the diagnosis may be delayed. The condition is characterised by a lack of rotation at the atlantoaxial joint which becomes fixed in a rotated and subluxed position. The management of children with a delayed presentation of this condition is controversial. This is a retrospective study of a group of such children.

Patients and Methods

Children who were admitted to two institutions between 1988 and 2014 with a diagnosis of AARF were included. We identified 12 children (four boys, eight girls), with a mean age of 7.3 years (1.5 to 13.4), in whom the duration of symptoms on presentation was at least four weeks (four to 39). All were treated with halo traction followed by a period of cervical immobilisation in a halo vest or a Minerva jacket. We describe a simple modification to the halo traction that allows the child to move their head whilst maintaining traction. The mean follow-up was 59.6 weeks (24 to 156).


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 593 - 603
1 May 2005
Harvey A Thomas NP Amis AA


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 241 - 248
1 Feb 2012
Firoozabadi R McDonald E Nguyen T Buckley JM Kandemir U

Filling the empty holes in peri-articular locking plates may improve the fatigue strength of the fixation. The purpose of this in vitro study was to investigate the effect of plugging the unused holes on the fatigue life of peri-articular distal femoral plates used to fix a comminuted supracondylar fracture model.

A locking/compression plate was applied to 33 synthetic femurs and then a 6 cm metaphyseal defect was created (AO Type 33-A3). The specimens were then divided into three groups: unplugged, plugged with locking screw only and fully plugged holes. They were then tested using a stepwise or run-out fatigue protocol, each applying cyclic physiological multiaxial loads.

All specimens in the stepwise group failed at the 770 N load level. The mean number of cycles to failure for the stepwise specimen was 25 500 cycles (sd 1500), 28 800 cycles (sd 6300), and 26 400 cycles (sd 2300) cycles for the unplugged, screw only and fully plugged configurations, respectively (p = 0.16). The mean number of cycles to failure for the run-out specimens was 42 800 cycles (sd 10 700), 36 000 cycles (sd 7200), and 36 600 cycles (sd 10 000) for the unplugged, screw only and fully plugged configurations, respectively (p = 0.50). There were also no differences in axial or torsional stiffness between the constructs. The failures were through the screw holes at the level of comminution.

In conclusion, filling the empty combination locking/compression holes in peri-articular distal femur locking plates at the level of supracondylar comminution does not increase the fatigue life of the fixation in a comminuted supracondylar femoral fracture model (AO 33-A3) with a 6 cm gap.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 3 | Pages 294 - 303
1 Mar 2009
Lindner T Kanakaris NK Marx B Cockbain A Kontakis G Giannoudis PV

Failure of fixation is a common problem in the treatment of osteoporotic fractures around the hip. The reinforcement of bone stock or of fixation of the implant may be a solution. Our study assesses the existing evidence for the use of bone substitutes in the management of these fractures in osteoporotic patients. Relevant publications were retrieved through Medline research and further scrutinised. Of 411 studies identified, 22 met the inclusion criteria, comprising 12 experimental and ten clinical reports. The clinical studies were evaluated with regard to their level of evidence. Only four were prospective and randomised.

Polymethylmethacrylate and calcium-phosphate cements increased the primary stability of the implant-bone construct in all experimental and clinical studies, although there was considerable variation in the design of the studies. In randomised, controlled studies, augmentation of intracapsular fractures of the neck of the femur with calcium-phosphate cement was associated with poor long-term results. There was a lack of data on the long-term outcome for trochanteric fractures. Because there were only a few, randomised, controlled studies, there is currently poor evidence for the use of bone cement in the treatment of fractures of the hip.