Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
The Bone & Joint Journal
Vol. 96-B, Issue 6 | Pages 845 - 850
1 Jun 2014
Romanò CL Logoluso N Meani E Romanò D De Vecchi E Vassena C Drago L

The treatment of chronic osteomyelitis often includes surgical debridement and filling the resultant void with antibiotic-loaded polymethylmethacrylate cement, bone grafts or bone substitutes. Recently, the use of bioactive glass to treat bone defects in infections has been reported in a limited series of patients. However, no direct comparison between this biomaterial and antibiotic-loaded bone substitute has been performed. . In this retrospective study, we compared the safety and efficacy of surgical debridement and local application of the bioactive glass S53P4 in a series of 27 patients affected by chronic osteomyelitis of the long bones (Group A) with two other series, treated respectively with an antibiotic-loaded hydroxyapatite and calcium sulphate compound (Group B; n = 27) or a mixture of tricalcium phosphate and an antibiotic-loaded demineralised bone matrix (Group C; n = 22). Systemic antibiotics were also used in all groups. After comparable periods of follow-up, the control of infection was similar in the three groups. In particular, 25 out of 27 (92.6%) patients of Group A, 24 out of 27 (88.9%) in Group B and 19 out of 22 (86.3%) in Group C showed no infection recurrence at means of 21.8 (12 to 36), 22.1 (12 to 36) and 21.5 (12 to 36) months follow-up, respectively, while Group A showed a reduced wound complication rate. Our results show that patients treated with a bioactive glass without local antibiotics achieved similar eradication of infection and less drainage than those treated with two different antibiotic-loaded calcium-based bone substitutes. Cite this article: Bone Joint J 2014; 96-B:845–50


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1126 - 1131
1 Aug 2016
Shiels SM Cobb RR Bedigrew KM Ritter G Kirk JF Kimbler A Finger Baker I Wenke JC

Aims. Demineralised bone matrix (DBM) is rarely used for the local delivery of prophylactic antibiotics. Our aim, in this study, was to show that a graft with a bioactive glass and DBM combination, which is currently available for clinical use, can be loaded with tobramycin and release levels of antibiotic greater than the minimum inhibitory concentration for Staphylococcus aureus without interfering with the bone healing properties of the graft, thus protecting the graft and surrounding tissues from infection. Materials and Methods. Antibiotic was loaded into a graft and subsequently evaluated for drug elution kinetics and the inhibition of bacterial growth. A rat femoral condylar plug model was used to determine the effect of the graft, loaded with antibiotic, on bone healing. Results. We found that tobramycin loaded into a graft composed of bioglass and DBM eluted antibiotic above the minimum inhibitory concentration for three days in vitro. It was also found that the antibiotic loaded into the graft produced no adverse effects on the bone healing properties of the DBM at a lower level of antibiotic. Conclusion. This antibiotic-loaded bone void filler may represent a promising option for the delivery of local antibiotics in orthopaedic surgery. Cite this article: Bone Joint J 2016;98-B:1126–31


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 1 | Pages 26 - 31
1 Jan 1996
Senaha Y Nakamura T Tamura J Kawanabe K Iida H Yamamuro T

We have developed a bioactive bone cement (BA cement) consisting of Bis-GMA resin and bioactive glass powder. It has high compressive and tensile strengths, a low curing temperature and its bioactivity allows it to bond directly with bone. We operated on the 18 femora of nine mongrel dogs for intercalary replacement of part of the bone by a metal prosthesis using either PMMA cement or BA cement for fixation. Three dogs were killed at each of 4, 12 and 26 weeks after surgery for the evaluation of fixation strength by a push-out test and for histological examination by Giemsa surface staining and SEM. Fixation strengths with PMMA cement at 4, 12 and 26 weeks after surgery were 46.8 ± 18.9, 50.0 ± 24.7, and 58.2 ± 28.9 kgf (mean ±SD), respectively. Those with BA cement were 56.8 ± 26.1, 67.2 ± 19.2, and 72.8 ± 22.2 kgf, respectively. Fibrous tissue intervened between bone and PMMA cement but BA cement had bonded directly to bone at 12 and 26 weeks. This suggests that BA cement will be useful in providing long-lasting fixation of implants to bone under weight-bearing conditions


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 787 - 792
1 Jul 2019
Goto K Kuroda Y Kawai T Kawanabe K Matsuda S

Aims

In the 1990s, a bioactive bone cement (BABC) containing apatite-wollastonite glass-ceramic (AW-GC) powder and bisphenol-a-glycidyl methacrylate resin was developed at our hospital. In 1996, we used BABC to fix the acetabular component in primary total hip arthroplasty (THA) in 20 patients as part of a clinical trial. The purpose of this study was to investigate the long-term results of primary THA using BABC.

Patients and Methods

A total of 20 patients (three men and 17 women) with a mean age of 57.4 years (40 to 71), a mean body weight of 52.3 kg (39 to 64), and a mean body mass index (BMI) of 23.0 kg/m2 (19.8 to 28.6) were evaluated clinically and radiologically. Survival analyses were undertaken, and wear analyses were carried out using a computer-aided method.


The Bone & Joint Journal
Vol. 95-B, Issue 5 | Pages 583 - 597
1 May 2013
Kurien T Pearson RG Scammell BE

We reviewed 59 bone graft substitutes marketed by 17 companies currently available for implantation in the United Kingdom, with the aim of assessing the peer-reviewed literature to facilitate informed decision-making regarding their use in clinical practice. After critical analysis of the literature, only 22 products (37%) had any clinical data. Norian SRS (Synthes), Vitoss (Orthovita), Cortoss (Orthovita) and Alpha-BSM (Etex) had Level I evidence. We question the need for so many different products, especially with limited published clinical evidence for their efficacy, and conclude that there is a considerable need for further prospective randomised trials to facilitate informed decision-making with regard to the use of current and future bone graft substitutes in clinical practice.

Cite this article: Bone Joint J 2013;95-B:583–97.


The Bone & Joint Journal
Vol. 100-B, Issue 3 | Pages 271 - 284
1 Mar 2018
Hexter AT Thangarajah T Blunn G Haddad FS

Aims

The success of anterior cruciate ligament reconstruction (ACLR) depends on osseointegration at the graft-tunnel interface and intra-articular ligamentization. Our aim was to conduct a systematic review of clinical and preclinical studies that evaluated biological augmentation of graft healing in ACLR.

Materials and Methods

In all, 1879 studies were identified across three databases. Following assessment against strict criteria, 112 studies were included (20 clinical studies; 92 animal studies).


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 836 - 841
1 Jun 2015
Jónsson BY Mjöberg B

A total of 20 patients with a depressed fracture of the lateral tibial plateau (Schatzker II or III) who would undergo open reduction and internal fixation were randomised to have the metaphyseal void in the bone filled with either porous titanium granules or autograft bone. Radiographs were undertaken within one week, after six weeks, three months, six months, and after 12 months.

The primary outcome measure was recurrent depression of the joint surface: a secondary outcome was the duration of surgery.

The risk of recurrent depression of the joint surface was lower (p < 0.001) and the operating time less (p < 0.002) when titanium granules were used.

The indication is that it is therefore beneficial to use porous titanium granules than autograft bone to fill the void created by reducing a depressed fracture of the lateral tibial plateau. There is no donor site morbidity, the operating time is shorter and the risk of recurrent depression of the articular surface is less.

Cite this article: Bone Joint J 2015; 97-B:836–41


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 427 - 434
1 Apr 2011
Griffin M Iqbal SA Bayat A

Failure of bone repair is a challenging problem in the management of fractures. There is a limited supply of autologous bone grafts for treating nonunions, with associated morbidity after harvesting. There is need for a better source of cells for repair. Mesenchymal stem cells (MSCs) hold promise for healing of bone because of their capacity to differentiate into osteoblasts and their availability from a wide variety of sources. Our review aims to evaluate the available clinical evidence and recent progress in strategies which attempt to use autologous and heterologous MSCs in clinical practice, including genetically-modified MSCs and those grown on scaffolds. We have compared various procedures for isolating and expanding a sufficient number of MSCs for use in a clinical setting.

There are now a number of clinical studies which have shown that implantation of MSCs is an effective, safe and durable method for aiding the repair and regeneration of bone.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 2 | Pages 151 - 157
1 Feb 2011
El-Husseiny M Patel S MacFarlane RJ Haddad FS

Bacterial infection in orthopaedic surgery can be devastating, and is associated with significant morbidity and poor functional outcomes, which may be improved if high concentrations of antibiotics can be delivered locally over a prolonged period of time. The two most widely used methods of doing this involve antibiotic-loaded polymethylmethacrylate or collagen fleece. The former is not biodegradable and is a surface upon which secondary bacterial infection may occur. Consequently, it has to be removed once treatment has finished. The latter has been used successfully as an adjunct to systemic antibiotics, but cannot effect a sustained release that would allow it to be used on its own, thereby avoiding systemic toxicity.

This review explores the newer biodegradable carrier systems which are currently in the experimental phase of development and which may prove to be more effective in the treatment of osteomyelitis.