Advertisement for orthosearch.org.uk
Results 1 - 20 of 83
Results per page:
Bone & Joint Research
Vol. 12, Issue 4 | Pages 285 - 293
17 Apr 2023
Chevalier A Vermue H Pringels L Herregodts S Duquesne K Victor J Loccufier M

Aims. The goal was to evaluate tibiofemoral knee joint kinematics during stair descent, by simulating the full stair descent motion in vitro. The knee joint kinematics were evaluated for two types of knee implants: bi-cruciate retaining and bi-cruciate stabilized. It was hypothesized that the bi-cruciate retaining implant better approximates native kinematics. Methods. The in vitro study included 20 specimens which were tested during a full stair descent with physiological muscle forces in a dynamic knee rig. Laxity envelopes were measured by applying external loading conditions in varus/valgus and internal/external direction. Results. The laxity results show that both implants are capable of mimicking the native internal/external-laxity during the controlled lowering phase. The kinematic results show that the bi-cruciate retaining implant tends to approximate the native condition better compared to bi-cruciate stabilized implant. This is valid for the internal/external rotation and the anteroposterior translation during all phases of the stair descent, and for the compression-distraction of the knee joint during swing and controlled lowering phase. Conclusion. The results show a better approximation of the native kinematics by the bi-cruciate retaining knee implant compared to the bi-cruciate stabilized knee implant for internal/external rotation and anteroposterior translation. Whether this will result in better patient outcomes remains to be investigated. Cite this article: Bone Joint Res 2023;12(4):285–293


Bone & Joint Open
Vol. 2, Issue 11 | Pages 974 - 980
25 Nov 2021
Allom RJ Wood JA Chen DB MacDessi SJ

Aims. It is unknown whether gap laxities measured in robotic arm-assisted total knee arthroplasty (TKA) correlate to load sensor measurements. The aim of this study was to determine whether symmetry of the maximum medial and lateral gaps in extension and flexion was predictive of knee balance in extension and flexion respectively using different maximum thresholds of intercompartmental load difference (ICLD) to define balance. Methods. A prospective cohort study of 165 patients undergoing functionally-aligned TKA was performed (176 TKAs). With trial components in situ, medial and lateral extension and flexion gaps were measured using robotic navigation while applying valgus and varus forces. The ICLD between medial and lateral compartments was measured in extension and flexion with the load sensor. The null hypothesis was that stressed gap symmetry would not correlate directly with sensor-defined soft tissue balance. Results. In TKAs with a stressed medial-lateral gap difference of ≤1 mm, 147 (89%) had an ICLD of ≤15 lb in extension, and 112 (84%) had an ICLD of ≤ 15 lb in flexion; 157 (95%) had an ICLD ≤ 30 lb in extension, and 126 (94%) had an ICLD ≤ 30 lb in flexion; and 165 (100%) had an ICLD ≤ 60 lb in extension, and 133 (99%) had an ICLD ≤ 60 lb in flexion. With a 0 mm difference between the medial and lateral stressed gaps, 103 (91%) of TKA had an ICLD ≤ 15 lb in extension, decreasing to 155 (88%) when the difference between the medial and lateral stressed extension gaps increased to ± 3 mm. In flexion, 47 (77%) had an ICLD ≤ 15 lb with a medial-lateral gap difference of 0 mm, increasing to 147 (84%) at ± 3 mm. Conclusion. This study found a strong relationship between intercompartmental loads and gap symmetry in extension and flexion measured with prostheses in situ. The results suggest that ICLD and medial-lateral gap difference provide similar assessment of soft-tissue balance in robotic arm-assisted TKA. Cite this article: Bone Jt Open 2021;2(11):974–980


Bone & Joint Open
Vol. 4, Issue 6 | Pages 432 - 441
5 Jun 2023
Kahlenberg CA Berube EE Xiang W Manzi JE Jahandar H Chalmers BP Cross MB Mayman DJ Wright TM Westrich GH Imhauser CW Sculco PK

Aims. Mid-level constraint designs for total knee arthroplasty (TKA) are intended to reduce coronal plane laxity. Our aims were to compare kinematics and ligament forces of the Zimmer Biomet Persona posterior-stabilized (PS) and mid-level designs in the coronal, sagittal, and axial planes under loads simulating clinical exams of the knee in a cadaver model. Methods. We performed TKA on eight cadaveric knees and loaded them using a robotic manipulator. We tested both PS and mid-level designs under loads simulating clinical exams via applied varus and valgus moments, internal-external (IE) rotation moments, and anteroposterior forces at 0°, 30°, and 90° of flexion. We measured the resulting tibiofemoral angulations and translations. We also quantified the forces carried by the medial and lateral collateral ligaments (MCL/LCL) via serial sectioning of these structures and use of the principle of superposition. Results. Mid-level inserts reduced varus angulations compared to PS inserts by a median of 0.4°, 0.9°, and 1.5° at 0°, 30°, and 90° of flexion, respectively, and reduced valgus angulations by a median of 0.3°, 1.0°, and 1.2° (p ≤ 0.027 for all comparisons). Mid-level inserts reduced net IE rotations by a median of 5.6°, 14.7°, and 17.5° at 0°, 30°, and 90°, respectively (p = 0.012). Mid-level inserts reduced anterior tibial translation only at 90° of flexion by a median of 3.0 millimetres (p = 0.036). With an applied varus moment, the mid-level insert decreased LCL force compared to the PS insert at all three flexion angles that were tested (p ≤ 0.036). In contrast, with a valgus moment the mid-level insert did not reduce MCL force. With an applied internal rotation moment, the mid-level insert decreased LCL force at 30° and 90° by a median of 25.7 N and 31.7 N, respectively (p = 0.017 and p = 0.012). With an external rotation moment, the mid-level insert decreased MCL force at 30° and 90° by a median of 45.7 N and 20.0 N, respectively (p ≤ 0.017 for all comparisons). With an applied anterior load, MCL and LCL forces showed no differences between the two inserts at 30° and 90° of flexion. Conclusion. The mid-level insert used in this study decreased coronal and axial plane laxities compared to the PS insert, but its stabilizing benefit in the sagittal plane was limited. Both mid-level and PS inserts depended on the MCL to resist anterior loads during a simulated clinical exam of anterior laxity. Cite this article: Bone Jt Open 2023;4(6):432–441


Bone & Joint Open
Vol. 5, Issue 8 | Pages 681 - 687
19 Aug 2024
van de Graaf VA Shen TS Wood JA Chen DB MacDessi SJ

Aims. Sagittal plane imbalance (SPI), or asymmetry between extension and flexion gaps, is an important issue in total knee arthroplasty (TKA). The purpose of this study was to compare SPI between kinematic alignment (KA), mechanical alignment (MA), and functional alignment (FA) strategies. Methods. In 137 robotic-assisted TKAs, extension and flexion stressed gap laxities and bone resections were measured. The primary outcome was the proportion and magnitude of medial and lateral SPI (gap differential > 2.0 mm) for KA, MA, and FA. Secondary outcomes were the proportion of knees with severe (> 4.0 mm) SPI, and resection thicknesses for each technique, with KA as reference. Results. FA showed significantly lower rates of medial and lateral SPI (2.9% and 2.2%) compared to KA (45.3%; p < 0.001, and 25.5%; p < 0.001) and compared to MA (52.6%; p < 0.001 and 29.9%; p < 0.001). There was no difference in medial and lateral SPI between KA and MA (p = 0.228 and p = 0.417, respectively). FA showed significantly lower rates of severe medial and lateral SPI (0 and 0%) compared to KA (8.0%; p < 0.001 and 7.3%; p = 0.001) and compared to MA (10.2%; p < 0.001 and 4.4%; p = 0.013). There was no difference in severe medial and lateral SPI between KA and MA (p = 0.527 and p = 0.307, respectively). MA resulted in thinner resections than KA in medial extension (mean difference (MD) 1.4 mm, SD 1.9; p < 0.001), medial flexion (MD 1.5 mm, SD 1.8; p < 0.001), and lateral extension (MD 1.1 mm, SD 1.9; p < 0.001). FA resulted in thinner resections than KA in medial extension (MD 1.6 mm, SD 1.4; p < 0.001) and lateral extension (MD 2.0 mm, SD 1.6; p < 0.001), but in thicker medial flexion resections (MD 0.8 mm, SD 1.4; p < 0.001). Conclusion. Mechanical and kinematic alignment (measured resection techniques) result in high rates of SPI. Pre-resection angular and translational adjustments with functional alignment, with typically smaller distal than posterior femoral resection, address this issue. Cite this article: Bone Jt Open 2024;5(8):681–687


Bone & Joint Open
Vol. 3, Issue 8 | Pages 656 - 665
23 Aug 2022
Tran T McEwen P Peng Y Trivett A Steele R Donnelly W Clark G

Aims. The mid-term results of kinematic alignment (KA) for total knee arthroplasty (TKA) using image derived instrumentation (IDI) have not been reported in detail, and questions remain regarding ligamentous stability and revisions. This paper aims to address the following: 1) what is the distribution of alignment of KA TKAs using IDI; 2) is a TKA alignment category associated with increased risk of failure or poor patient outcomes; 3) does extending limb alignment lead to changes in soft-tissue laxity; and 4) what is the five-year survivorship and outcomes of KA TKA using IDI?. Methods. A prospective, multicentre, trial enrolled 100 patients undergoing KA TKA using IDI, with follow-up to five years. Alignment measures were conducted pre- and postoperatively to assess constitutional alignment and final implant position. Patient-reported outcome measures (PROMs) of pain and function were also included. The Australian Orthopaedic Association National Joint Arthroplasty Registry was used to assess survivorship. Results. The postoperative HKA distribution varied from 9° varus to 11° valgus. All PROMs showed statistical improvements at one year (p < 0.001), with further improvements at five years for Knee Osteoarthritis Outcome Score symptoms (p = 0.041) and Forgotten Joint Score (p = 0.011). Correlation analysis showed no difference (p = 0.610) between the hip-knee-ankle and joint line congruence angle at one and five years. Sub-group analysis showed no difference in PROMs for patients placed within 3° of neutral compared to those placed > 3°. There were no revisions for tibial loosening; however, there were reports of a higher incidence of poor patella tracking and patellofemoral stiffness. Conclusion. PROMs were not impacted by postoperative alignment category. Ligamentous stability was maintained at five years with joint line obliquity. There were no revisions for tibial loosening despite a significant portion of tibiae placed in varus; however, KA executed with IDI resulted in a higher than anticipated rate of patella complications. Cite this article: Bone Jt Open 2022;3(8):656–665


Bone & Joint Open
Vol. 2, Issue 8 | Pages 569 - 575
1 Aug 2021
Bouguennec N Robinson J Douiri A Graveleau N Colombet PD

Aims. MRI has been suggested as an objective method of assessing anterior crucate ligament (ACL) graft “ligamentization” after reconstruction. It has been proposed that the MRI appearances could be used as an indicator of graft maturity and used as part of a return-to-sport assessment. The aim of this study was to evaluate the correlation between MRI graft signal and postoperative functional scores, anterior knee laxity, and patient age at operation. Methods. A consecutive cohort of 149 patients who had undergone semitendinosus autograft ACL reconstruction, using femoral and tibial adjustable loop fixations, were evaluated retrospectively postoperatively at two years. All underwent MRI analysis of the ACL graft, performed using signal-to-noise quotient (SNQ) and the Howell score. Functional outcome scores (Lysholm, Tegner, International Knee Documentation Committee (IKDC) subjective, and IKDC objective) were obtained and all patients underwent instrumented side-to-side anterior laxity differential laxity testing. Results. Two-year postoperative mean outcome scores were: Tegner 6.5 (2 to 10); Lysholm 89.8 (SD 10.4; 52 to 100); and IKDC subjective 86.8 (SD 11.8; 51 to 100). The objective IKDC score was 86% A (128 patients), 13% B (19 patients), and 1% C (two patients). Mean side-to-side anterior laxity difference (134 N force) was 0.6 mm (SD 1.8; -4.1 to 5.6). Mean graft SNQ was 2.0 (SD 3.5; -14 to 17). Graft Howell scores were I (61%, 91 patients), II (25%, 37 patients), III (13%, 19 patients), and IV (1%, two patients). There was no correlation between either Howell score or SNQ with instrumented anterior or Lysholm, Tegner, and IKDC scores, nor was any correlation found between patient age and ACL graft SNQ or Howell score. Conclusion. The two-year postoperative MRI appearances of four-strand, semitendinosus ACL autografts (as measured by SNQ and Howell score) do not appear to have a relationship with postoperative functional scores, instrumented anterior laxity, or patient age at surgery. Other tools for analysis of graft maturity should be developed. Cite this article: Bone Jt Open 2021;2(8):569–575


Bone & Joint Research
Vol. 8, Issue 5 | Pages 207 - 215
1 May 2019
Key S Scott G Stammers JG Freeman MAR Pinskerova V Field RE Skinner J Banks SA

Objectives. The medially spherical GMK Sphere (Medacta International AG, Castel San Pietro, Switzerland) total knee arthroplasty (TKA) was previously shown to accommodate lateral rollback while pivoting around a stable medial compartment, aiming to replicate native knee kinematics in which some coronal laxity, especially laterally, is also present. We assess coronal plane kinematics of the GMK Sphere and explore the occurrence and pattern of articular separation during static and dynamic activities. Methods. Using pulsed fluoroscopy and image matching, the coronal kinematics and articular surface separation of 16 well-functioning TKAs were studied during weight-bearing and non-weight-bearing, static, and dynamic activities. The closest distances between the modelled articular surfaces were examined with respect to knee position, and proportions of joint poses exhibiting separation were computed. Results. Overall, 1717 joint poses were analyzed. At a 1.0 mm detection threshold, 37 instances of surface separation were observed in the lateral compartment and four medially (p < 0.001). Separation was activity-dependent, both laterally and medially (p < 0.001), occurring more commonly during static deep flexion in the lateral compartment, and during static rotation in the medial compartment. Lateral separation occurred more frequently than medial during kneeling (7/14 lateral vs 1/14 medial; p = 0.031) and stepping (20/1022 lateral vs 0/1022 medial; p < 0.001). Separation varied significantly between individuals during dynamic activities. Conclusion. No consistent association between closest distances of the articular surfaces and knee position was found during any activity. Lift-off was infrequent and depended on the activity performed and the individual knee. Lateral separation was consistent with the design rationale. Medial lift-off was rare and mostly in non-weight-bearing activities. Cite this article: S. Key, G. Scott, J. G. Stammers, M. A. R. Freeman†, V. Pinskerova, R. E. Field, J. Skinner, S. A. Banks. Does lateral lift-off occur in static and dynamic activity in a medially spherical total knee arthroplasty? A pulsed-fluoroscopic investigation. Bone Joint Res 2019;8:207–215. DOI: 10.1302/2046-3758.85.BJR-2018-0237.R1


Bone & Joint Research
Vol. 2, Issue 11 | Pages 233 - 237
1 Nov 2013
Russell DF Deakin AH Fogg QA Picard F

Objectives. We performed in vitro validation of a non-invasive skin-mounted system that could allow quantification of anteroposterior (AP) laxity in the outpatient setting. Methods. A total of 12 cadaveric lower limbs were tested with a commercial image-free navigation system using trackers secured by bone screws. We then tested a non-invasive fabric-strap system. The lower limb was secured at 10° intervals from 0° to 60° of knee flexion and 100 N of force was applied perpendicular to the tibia. Acceptable coefficient of repeatability (CR) and limits of agreement (LOA) of 3 mm were set based on diagnostic criteria for anterior cruciate ligament (ACL) insufficiency. Results. Reliability and precision within the individual invasive and non-invasive systems was acceptable throughout the range of flexion tested (intra-class correlation coefficient 0.88, CR 1.6 mm). Agreement between the two systems was acceptable measuring AP laxity between full extension and 40° knee flexion (LOA 2.9 mm). Beyond 40° of flexion, agreement between the systems was unacceptable (LOA > 3 mm). Conclusions. These results indicate that from full knee extension to 40° flexion, non-invasive navigation-based quantification of AP tibial translation is as accurate as the standard validated commercial system, particularly in the clinically and functionally important range of 20° to 30° knee flexion. This could be useful in diagnosis and post-operative evaluation of ACL pathology. Cite this article: Bone Joint Res 2013;2:233–7


Bone & Joint Open
Vol. 5, Issue 8 | Pages 628 - 636
2 Aug 2024
Eachempati KK Parameswaran A Ponnala VK Sunil A Sheth NP

Aims

The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic varus knees; 3) to assess the requirement of soft-tissue releases during RA-TKA using E-rKA; and 4) to compare the accuracy of surgical plan execution between knees managed with adjustments in component positioning alone, and those which require additional soft-tissue releases.

Methods

Patients who underwent RA-TKA between January and December 2022 for primary varus osteoarthritis were included. Safe boundaries for E-rKA were defined. Residual medial compartment tightness was compared following virtual surgical planning using E-rKA and MA, in the same set of knees. Soft-tissue releases were documented. Errors in postoperative alignment in relation to planned alignment were compared between patients who did (group A) and did not (group B) require soft-tissue releases.


Bone & Joint Open
Vol. 5, Issue 8 | Pages 708 - 714
22 Aug 2024
Mikhail M Riley N Rodrigues J Carr E Horton R Beale N Beard DJ Dean BJF

Aims

Complete ruptures of the ulnar collateral ligament (UCL) of the thumb are a common injury, yet little is known about their current management in the UK. The objective of this study was to assess the way complete UCL ruptures are managed in the UK.

Methods

We carried out a multicentre, survey-based cross-sectional study in 37 UK centres over a 16-month period from June 2022 to September 2023. The survey results were analyzed descriptively.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims

The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population.

Methods

We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 94 - 100
5 Feb 2024
Mancino F Kayani B Gabr A Fontalis A Plastow R Haddad FS

Anterior cruciate ligament (ACL) injuries are among the most common and debilitating knee injuries in professional athletes with an incidence in females up to eight-times higher than their male counterparts. ACL injuries can be career-threatening and are associated with increased risk of developing knee osteoarthritis in future life. The increased risk of ACL injury in females has been attributed to various anatomical, developmental, neuromuscular, and hormonal factors. Anatomical and hormonal factors have been identified and investigated as significant contributors including osseous anatomy, ligament laxity, and hamstring muscular recruitment. Postural stability and impact absorption are associated with the stabilizing effort and stress on the ACL during sport activity, increasing the risk of noncontact pivot injury. Female patients have smaller diameter hamstring autografts than males, which may predispose to increased risk of re-rupture following ACL reconstruction and to an increased risk of chondral and meniscal injuries. The addition of an extra-articular tenodesis can reduce the risk of failure; therefore, it should routinely be considered in young elite athletes. Prevention programs target key aspects of training including plyometrics, strengthening, balance, endurance and stability, and neuromuscular training, reducing the risk of ACL injuries in female athletes by up to 90%. Sex disparities in access to training facilities may also play an important role in the risk of ACL injuries between males and females. Similarly, football boots, pitches quality, and football size and weight should be considered and tailored around females’ characteristics. Finally, high levels of personal and sport-related stress have been shown to increase the risk of ACL injury which may be related to alterations in attention and coordination, together with increased muscular tension, and compromise the return to sport after ACL injury. Further investigations are still necessary to better understand and address the risk factors involved in ACL injuries in female athletes.

Cite this article: Bone Jt Open 2024;5(2):94–100.


Bone & Joint Open
Vol. 4, Issue 1 | Pages 13 - 18
5 Jan 2023
Walgrave S Oussedik S

Abstract

Robotic-assisted total knee arthroplasty (TKA) has proven higher accuracy, fewer alignment outliers, and improved short-term clinical outcomes when compared to conventional TKA. However, evidence of cost-effectiveness and individual superiority of one system over another is the subject of further research. Despite its growing adoption rate, published results are still limited and comparative studies are scarce. This review compares characteristics and performance of five currently available systems, focusing on the information and feedback each system provides to the surgeon, what the systems allow the surgeon to modify during the operation, and how each system then aids execution of the surgical plan.

Cite this article: Bone Jt Open 2023;4(1):13–18.


The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 35 - 46
1 Jan 2023
Mills K Wymenga AB Bénard MR Kaptein BL Defoort KC van Hellemondt GG Heesterbeek PJC

Aims

The aim of this study was to compare a bicruciate-retaining (BCR) total knee arthroplasty (TKA) with a posterior cruciate-retaining (CR) TKA design in terms of kinematics, measured using fluoroscopy and stability as micromotion using radiostereometric analysis (RSA).

Methods

A total of 40 patients with end-stage osteoarthritis were included in this randomized controlled trial. All patients performed a step-up and lunge task in front of a monoplane fluoroscope one year postoperatively. Femorotibial contact point (CP) locations were determined at every flexion angle and compared between the groups. RSA images were taken at baseline, six weeks, three, six, 12, and 24 months postoperatively. Clinical and functional outcomes were compared postoperatively for two years.


Bone & Joint Open
Vol. 3, Issue 10 | Pages 815 - 825
20 Oct 2022
Athanatos L Kulkarni K Tunnicliffe H Samaras M Singh HP Armstrong AL

Aims

There remains a lack of consensus regarding the management of chronic anterior sternoclavicular joint (SCJ) instability. This study aimed to assess whether a standardized treatment algorithm (incorporating physiotherapy and surgery and based on the presence of trauma) could successfully guide management and reduce the number needing surgery.

Methods

Patients with chronic anterior SCJ instability managed between April 2007 and April 2019 with a standardized treatment algorithm were divided into non-traumatic (offered physiotherapy) and traumatic (offered surgery) groups and evaluated at discharge. Subsequently, midterm outcomes were assessed via a postal questionnaire with a subjective SCJ stability score, Oxford Shoulder Instability Score (OSIS, adapted for the SCJ), and pain visual analogue scale (VAS), with analysis on an intention-to-treat basis.


Bone & Joint Research
Vol. 13, Issue 9 | Pages 485 - 496
13 Sep 2024
Postolka B Taylor WR Fucentese SF List R Schütz P

Aims

This study aimed to analyze kinematics and kinetics of the tibiofemoral joint in healthy subjects with valgus, neutral, and varus limb alignment throughout multiple gait activities using dynamic videofluoroscopy.

Methods

Five subjects with valgus, 12 with neutral, and ten with varus limb alignment were assessed during multiple complete cycles of level walking, downhill walking, and stair descent using a combination of dynamic videofluoroscopy, ground reaction force plates, and optical motion capture. Following 2D/3D registration, tibiofemoral kinematics and kinetics were compared between the three limb alignment groups.


Bone & Joint Research
Vol. 11, Issue 10 | Pages 739 - 750
4 Oct 2022
Shu L Abe N Li S Sugita N

Aims

To fully quantify the effect of posterior tibial slope (PTS) angles on joint kinematics and contact mechanics of intact and anterior cruciate ligament-deficient (ACLD) knees during the gait cycle.

Methods

In this controlled laboratory study, we developed an original multiscale subject-specific finite element musculoskeletal framework model and integrated it with the tibiofemoral and patellofemoral joints with high-fidelity joint motion representations, to investigate the effects of 2.5° increases in PTS angles on joint dynamics and contact mechanics during the gait cycle.


Bone & Joint Open
Vol. 5, Issue 1 | Pages 3 - 8
2 Jan 2024
Husum H Hellfritzsch MB Maimburg RD Møller-Madsen B Henriksen M Lapitskaya N Kold S Rahbek O

Aims

The present study seeks to investigate the correlation of pubofemoral distances (PFD) to α angles, and hip displaceability status, defined as femoral head coverage (FHC) or FHC during manual provocation of the newborn hip < 50%.

Methods

We retrospectively included all newborns referred for ultrasound screening at our institution based on primary risk factor, clinical, and PFD screening. α angles, PFD, FHC, and FHC at follow-up ultrasound for referred newborns were measured and compared using scatter plots, linear regression, paired t-test, and box-plots.


Bone & Joint Open
Vol. 5, Issue 11 | Pages 1013 - 1019
11 Nov 2024
Clark SC Pan X Saris DBF Taunton MJ Krych AJ Hevesi M

Aims

Distal femoral osteotomies (DFOs) are commonly used for the correction of valgus deformities and lateral compartment osteoarthritis. However, the impact of a DFO on subsequent total knee arthroplasty (TKA) function remains a subject of debate. Therefore, the purpose of this study was to determine the effect of a unilateral DFO on subsequent TKA function in patients with bilateral TKAs, using the contralateral knee as a self-matched control group.

Methods

The inclusion criteria consisted of patients who underwent simultaneous or staged bilateral TKA after prior unilateral DFO between 1972 and 2023. The type of osteotomy performed, osteotomy hardware fixation, implanted TKA components, and revision rates were recorded. Postoperative outcomes including the Forgotten Joint Score-12 (FJS-12), Tegner Activity Scale score, and subjective knee preference were also obtained at final follow-up.


Bone & Joint Open
Vol. 5, Issue 11 | Pages 992 - 998
6 Nov 2024
Wignadasan W Magan A Kayani B Fontalis A Chambers A Rajput V Haddad FS

Aims

While residual fixed flexion deformity (FFD) in unicompartmental knee arthroplasty (UKA) has been associated with worse functional outcomes, limited evidence exists regarding FFD changes. The objective of this study was to quantify FFD changes in patients with medial unicompartmental knee arthritis undergoing UKA, and investigate any correlation with clinical outcomes.

Methods

This study included 136 patients undergoing robotic arm-assisted medial UKA between January 2018 and December 2022. The study included 75 males (55.1%) and 61 (44.9%) females, with a mean age of 67.1 years (45 to 90). Patients were divided into three study groups based on the degree of preoperative FFD: ≤ 5°, 5° to ≤ 10°, and > 10°. Intraoperative optical motion capture technology was used to assess pre- and postoperative FFD. Clinical FFD was measured pre- and postoperatively at six weeks and one year following surgery. Preoperative and one-year postoperative Oxford Knee Scores (OKS) were collected.