Advertisement for orthosearch.org.uk
Results 1 - 20 of 20
Results per page:
Bone & Joint Open
Vol. 5, Issue 9 | Pages 809 - 817
27 Sep 2024
Altorfer FCS Kelly MJ Avrumova F Burkhard MD Sneag DB Chazen JL Tan ET Lebl DR

Aims. To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation. Methods. Robotic planning software was used to map out bone removal for a laminar decompression after registration of CT scan images of one cadaveric specimen. A specialized acorn-shaped bone removal robotic drill was used to complete a robotic lumbar laminectomy. Post-procedure advanced imaging was obtained to compare actual bony decompression to the surgical plan. After confirming accuracy of the technique, a minimally invasive robotic-assisted laminectomy was performed on one 72-year-old female patient with lumbar spinal stenosis. Postoperative advanced imaging was obtained to confirm the decompression. Results. A workflow for robotic-assisted lumbar laminectomy was successfully developed in a human cadaveric specimen, as excellent decompression was confirmed by postoperative CT imaging. Subsequently, the workflow was applied clinically in a patient with severe spinal stenosis. Excellent decompression was achieved intraoperatively and preservation of the dorsal midline structures was confirmed on postoperative MRI. The patient experienced improvement in symptoms postoperatively and was discharged within 24 hours. Conclusion. Minimally invasive robotic-assisted lumbar decompression utilizing a specialized robotic bone removal instrument was shown to be accurate and effective both in vitro and in vivo. The robotic bone removal technique has the potential for less invasive removal of laminar bone for spinal decompression, all the while preserving the spinous process and the posterior ligamentous complex. Spinal robotic surgery has previously been limited to the insertion of screws and, more recently, cages; however, recent innovations have expanded robotic capabilities to decompression of neurological structures. Cite this article: Bone Jt Open 2024;5(9):809–817


Bone & Joint Research
Vol. 9, Issue 10 | Pages 653 - 666
7 Oct 2020
Li W Li G Chen W Cong L

Aims. The aim of this study was to systematically compare the safety and accuracy of robot-assisted (RA) technique with conventional freehand with/without fluoroscopy-assisted (CT) pedicle screw insertion for spine disease. Methods. A systematic search was performed on PubMed, EMBASE, the Cochrane Library, MEDLINE, China National Knowledge Infrastructure (CNKI), and WANFANG for randomized controlled trials (RCTs) that investigated the safety and accuracy of RA compared with conventional freehand with/without fluoroscopy-assisted pedicle screw insertion for spine disease from 2012 to 2019. This meta-analysis used Mantel-Haenszel or inverse variance method with mixed-effects model for heterogeneity, calculating the odds ratio (OR), mean difference (MD), standardized mean difference (SMD), and 95% confidence intervals (CIs). The results of heterogeneity, subgroup analysis, and risk of bias were analyzed. Results. Ten RCTs with 713 patients and 3,331 pedicle screws were included. Compared with CT, the accuracy rate of RA was superior in Grade A with statistical significance and Grade A + B without statistical significance. Compared with CT, the operating time of RA was longer. The difference between RA and CT was statistically significant in radiation dose. Proximal facet joint violation occurred less in RA than in CT. The postoperative Oswestry Disability Index (ODI) of RA was smaller than that of CT, and there were some interesting outcomes in our subgroup analysis. Conclusion. RA technique could be viewed as an accurate and safe pedicle screw implantation method compared to CT. A robotic system equipped with optical intraoperative navigation is superior to CT in accuracy. RA pedicle screw insertion can improve accuracy and maintain stability for some challenging areas. Cite this article: Bone Joint Res 2020;9(10):653–666


Bone & Joint Open
Vol. 4, Issue 11 | Pages 832 - 838
3 Nov 2023
Pichler L Li Z Khakzad T Perka C Pumberger M Schömig F

Aims. Implant-related postoperative spondylodiscitis (IPOS) is a severe complication in spine surgery and is associated with high morbidity and mortality. With growing knowledge in the field of periprosthetic joint infection (PJI), equivalent investigations towards the management of implant-related infections of the spine are indispensable. To our knowledge, this study provides the largest description of cases of IPOS to date. Methods. Patients treated for IPOS from January 2006 to December 2020 were included. Patient demographics, parameters upon admission and discharge, radiological imaging, and microbiological results were retrieved from medical records. CT and MRI were analyzed for epidural, paravertebral, and intervertebral abscess formation, vertebral destruction, and endplate involvement. Pathogens were identified by CT-guided or intraoperative biopsy, intraoperative tissue sampling, or implant sonication. Results. A total of 32 cases of IPOS with a mean patient age of 68.7 years (37.6 to 84.1) were included. Diabetes, age > 60 years, and history of infection were identified as risk factors. Patient presentation upon admission included a mean body temperature of 36.7°C (36.1 to 38.0), back pain at rest (mean visual analogue scale (VAS) mean 5/10) and when mobile (mean VAS 6/10), as well as elevated levels of CRP (mean 76.8 mg/l (0.4 to 202.9)) and white blood cell count (mean 9.2 units/nl (2.6 to 32.8)). Pathogens were identified by CT-guided or conventional biopsy, intraoperative tissue sampling, or sonication, and Gram-positive cocci presented as the most common among them. Antibiotic therapy was established in all cases with pathogen-specific treatment in 23 (71.9%) subjects. Overall 27 (84.4%) patients received treatment by debridement, decompression, and fusion of the affected segment. Conclusion. Cases of IPOS are rare and share similarities with spontaneous spondylodiscitis. While procedures such as CT-guided biopsy and sonication are valuable tools in the diagnosis of IPOS, MRI and intraoperative tissue sampling remain the gold standard. Research on known principles of PJI such as implant retention versus implant exchange need to be expanded to the field of spine surgery. Cite this article: Bone Jt Open 2023;4(11):832–838


Bone & Joint Open
Vol. 5, Issue 10 | Pages 886 - 893
15 Oct 2024
Zhang C Li Y Wang G Sun J

Aims. A variety of surgical methods and strategies have been demonstrated for Andersson lesion (AL) therapy. In 2011, we proposed and identified the feasibility of stabilizing the spine without curettaging the vertebral or discovertebral lesion to cure non-kyphotic AL. Additionally, due to the excellent reunion ability of ankylosing spondylitis, we further came up with minimally invasive spinal surgery (MIS) to avoid the need for both bone graft and lesion curettage in AL surgery. However, there is a paucity of research into the comparison between open spinal fusion (OSF) and early MIS in the treatment of AL. The purpose of this study was to investigate and compare the clinical outcomes and radiological evaluation of our early MIS approach and OSF for AL. Methods. A total of 39 patients diagnosed with AL who underwent surgery from January 2004 to December 2022 were retrospectively screened for eligibility. Patients with AL were divided into an MIS group and an OSF group. The primary outcomes were union of the lesion on radiograph and CT, as well as the visual analogue scale (VAS) and Oswestry Disability Index (ODI) scores immediately after surgery, and at the follow-up (mean 29 months (standard error (SE) 9)). The secondary outcomes were total blood loss during surgery, operating time, and improvement in the radiological parameters: global and local kyphosis, sagittal vertical axis, sagittal alignment, and chin-brow vertical angle immediately after surgery and at the follow-up. Results. Data for 30 patients with AL were evaluated: 14 in the MIS group and 16 in the OSF group. All patients were followed up after surgery; no nonunion complications or instrumentation failures were observed in either group. No significant differences in the VAS and ODI scores were identified between the two groups. Mean ODI improved from 51 (SE 5) to 17 (SE 5) in the MIS group and from 52 (SE 6) to 19 (SE 5) in the OSF group at the follow-up. There were significant improvements in total blood loss (p = 0.025) and operating time (p < 0.001) between the groups. There was also no significant difference in local kyphosis six months postoperatively (p = 0.119). Conclusion. Early MIS is an effective treatment for AL. MIS provides comparable clinical outcomes to those treated with OSF, with less total blood loss and shorter operating time. Our results support and identify the feasibility of solid immobilization achieved by posterior instrumentation without bone graft via MIS for the treatment of AL. Cite this article: Bone Jt Open 2024;5(10):886–893


Bone & Joint Open
Vol. 4, Issue 11 | Pages 873 - 880
17 Nov 2023
Swaby L Perry DC Walker K Hind D Mills A Jayasuriya R Totton N Desoysa L Chatters R Young B Sherratt F Latimer N Keetharuth A Kenison L Walters S Gardner A Ahuja S Campbell L Greenwood S Cole A

Aims

Scoliosis is a lateral curvature of the spine with associated rotation, often causing distress due to appearance. For some curves, there is good evidence to support the use of a spinal brace, worn for 20 to 24 hours a day to minimize the curve, making it as straight as possible during growth, preventing progression. Compliance can be poor due to appearance and comfort. A night-time brace, worn for eight to 12 hours, can achieve higher levels of curve correction while patients are supine, and could be preferable for patients, but evidence of efficacy is limited. This is the protocol for a randomized controlled trial of ‘full-time bracing’ versus ‘night-time bracing’ in adolescent idiopathic scoliosis (AIS).

Methods

UK paediatric spine clinics will recruit 780 participants aged ten to 15 years-old with AIS, Risser stage 0, 1, or 2, and curve size (Cobb angle) 20° to 40° with apex at or below T7. Patients are randomly allocated 1:1, to either full-time or night-time bracing. A qualitative sub-study will explore communication and experiences of families in terms of bracing and research. Patient and Public Involvement & Engagement informed study design and will assist with aspects of trial delivery and dissemination.


Bone & Joint Open
Vol. 5, Issue 3 | Pages 243 - 251
25 Mar 2024
Wan HS Wong DLL To CS Meng N Zhang T Cheung JPY

Aims

This systematic review aims to identify 3D predictors derived from biplanar reconstruction, and to describe current methods for improving curve prediction in patients with mild adolescent idiopathic scoliosis.

Methods

A comprehensive search was conducted by three independent investigators on MEDLINE, PubMed, Web of Science, and Cochrane Library. Search terms included “adolescent idiopathic scoliosis”,“3D”, and “progression”. The inclusion and exclusion criteria were carefully defined to include clinical studies. Risk of bias was assessed with the Quality in Prognostic Studies tool (QUIPS) and Appraisal tool for Cross-Sectional Studies (AXIS), and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach. In all, 915 publications were identified, with 377 articles subjected to full-text screening; overall, 31 articles were included.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 202 - 211
7 Mar 2023
Bai Z Shou Z Hu K Yu J Meng H Chen C

Aims

This study was performed to explore the effect of melatonin on pyroptosis in nucleus pulposus cells (NPCs) and the underlying mechanism of that effect.

Methods

This experiment included three patients diagnosed with lumbar disc herniation who failed conservative treatment. Nucleus pulposus tissue was isolated from these patients when they underwent surgical intervention, and primary NPCs were isolated and cultured. Western blotting, reverse transcription polymerase chain reaction, fluorescence staining, and other methods were used to detect changes in related signalling pathways and the ability of cells to resist pyroptosis.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1333 - 1341
1 Nov 2024
Cheung PWH Leung JHM Lee VWY Cheung JPY

Aims

Developmental cervical spinal stenosis (DcSS) is a well-known predisposing factor for degenerative cervical myelopathy (DCM) but there is a lack of consensus on its definition. This study aims to define DcSS based on MRI, and its multilevel characteristics, to assess the prevalence of DcSS in the general population, and to evaluate the presence of DcSS in the prediction of developing DCM.

Methods

This cross-sectional study analyzed MRI spine morphological parameters at C3 to C7 (including anteroposterior (AP) diameter of spinal canal, spinal cord, and vertebral body) from DCM patients (n = 95) and individuals recruited from the general population (n = 2,019). Level-specific median AP spinal canal diameter from DCM patients was used to screen for stenotic levels in the population-based cohort. An individual with multilevel (≥ 3 vertebral levels) AP canal diameter smaller than the DCM median values was considered as having DcSS. The most optimal cut-off canal diameter per level for DcSS was determined by receiver operating characteristic analyses, and multivariable logistic regression was performed for the prediction of developing DCM that required surgery.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 522 - 535
4 Sep 2023
Zhang G Li L Luo Z Zhang C Wang Y Kang X

Aims

This study aimed, through bioinformatics analysis and in vitro experiment validation, to identify the key extracellular proteins of intervertebral disc degeneration (IDD).

Methods

The gene expression profile of GSE23130 was downloaded from the Gene Expression Omnibus (GEO) database. Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases, and we used Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze the functions and pathways of EP-DEGs. STRING and Cytoscape were used to construct protein-protein interaction (PPI) networks and identify hub EP-DEGs. NetworkAnalyst was used to analyze transcription factors (TFs) and microRNAs (miRNAs) that regulate hub EP-DEGs. A search of the Drug Signatures Database (DSigDB) for hub EP-DEGs revealed multiple drug molecules and drug-target interactions.


Bone & Joint Research
Vol. 6, Issue 4 | Pages 245 - 252
1 Apr 2017
Fu M Ye Q Jiang C Qian L Xu D Wang Y Sun P Ouyang J

Objectives. Many studies have investigated the kinematics of the lumbar spine and the morphological features of the lumbar discs. However, the segment-dependent immediate changes of the lumbar intervertebral space height during flexion-extension motion are still unclear. This study examined the changes of intervertebral space height during flexion-extension motion of lumbar specimens. Methods. First, we validated the accuracy and repeatability of a custom-made mechanical loading equipment set-up. Eight lumbar specimens underwent CT scanning in flexion, neural, and extension positions by using the equipment set-up. The changes in the disc height and distance between adjacent two pedicle screw entry points (DASEP) of the posterior approach at different lumbar levels (L3/4, L4/5 and L5/S1) were examined on three-dimensional lumbar models, which were reconstructed from the CT images. Results. All the vertebral motion segments (L3/4, L4/5 and L5/S1) had greater changes in disc height and DASEP from neutral to flexion than from neutral to extension. The change in anterior disc height gradually increased from upper to lower levels, from neutral to flexion. The changes in anterior and posterior disc heights were similar at the L4/5 level from neutral to extension, but the changes in anterior disc height were significantly greater than those in posterior disc height at the L3/4 and L5/S1 levels, from neutral to extension. Conclusions. The lumbar motion segment showed level-specific changes in disc height and DASEP. The data may be helpful in understanding the physiologic dynamic characteristics of the lumbar spine and in optimising the parameters of lumbar surgical instruments. Cite this article: M. Fu, Q. Ye, C. Jiang, L. Qian, D. Xu, Y. Wang, P. Sun, J. Ouyang. The segment-dependent changes in lumbar intervertebral space height during flexion-extension motion. Bone Joint Res 2017;6:245–252. DOI: 10.1302/2046-3758.64.BJR-2016-0245.R1


Bone & Joint Research
Vol. 10, Issue 12 | Pages 797 - 806
8 Dec 2021
Chevalier Y Matsuura M Krüger S Traxler H Fleege† C Rauschmann M Schilling C

Aims

Anchorage of pedicle screw rod instrumentation in the elderly spine with poor bone quality remains challenging. Our study aims to evaluate how the screw bone anchorage is affected by screw design, bone quality, loading conditions, and cementing techniques.

Methods

Micro-finite element (µFE) models were created from micro-CT (μCT) scans of vertebrae implanted with two types of pedicle screws (L: Ennovate and R: S4). Simulations were conducted for a 10 mm radius region of interest (ROI) around each screw and for a full vertebra (FV) where different cementing scenarios were simulated around the screw tips. Stiffness was calculated in pull-out and anterior bending loads.


Bone & Joint Research
Vol. 10, Issue 5 | Pages 328 - 339
31 May 2021
Jia X Huang G Wang S Long M Tang X Feng D Zhou Q

Aims

Non-coding microRNA (miRNA) in extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) may promote neuronal repair after spinal cord injury (SCI). In this paper we report on the effects of MSC-EV-microRNA-381 (miR-381) in a rodent model of SCI.

Methods

In the current study, the luciferase assay confirmed a binding site of bromodomain-containing protein 4 (BRD4) and Wnt family member 5A (WNT5A). Then we detected expression of miR-381, BRD4, and WNT5A in dorsal root ganglia (DRG) cells treated with MSC-isolated EVs and measured neuron apoptosis in culture by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. A rat model of SCI was established to detect the in vivo effect of miR-381 and MSC-EVs on SCI.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 419 - 426
1 Sep 2016
Leichtle CI Lorenz A Rothstock S Happel J Walter F Shiozawa T Leichtle UG

Objectives. Cement augmentation of pedicle screws could be used to improve screw stability, especially in osteoporotic vertebrae. However, little is known concerning the influence of different screw types and amount of cement applied. Therefore, the aim of this biomechanical in vitro study was to evaluate the effect of cement augmentation on the screw pull-out force in osteoporotic vertebrae, comparing different pedicle screws (solid and fenestrated) and cement volumes (0 mL, 1 mL or 3 mL). Materials and Methods. A total of 54 osteoporotic human cadaver thoracic and lumbar vertebrae were instrumented with pedicle screws (uncemented, solid cemented or fenestrated cemented) and augmented with high-viscosity PMMA cement (0 mL, 1 mL or 3 mL). The insertion torque and bone mineral density were determined. Radiographs and CT scans were undertaken to evaluate cement distribution and cement leakage. Pull-out testing was performed with a material testing machine to measure failure load and stiffness. The paired t-test was used to compare the two screws within each vertebra. Results. Mean failure load was significantly greater for fenestrated cemented screws (+622 N; p ⩽ 0.001) and solid cemented screws (+460 N; p ⩽ 0.001) than for uncemented screws. There was no significant difference between the solid and fenestrated cemented screws (p = 0.5). In the lower thoracic vertebrae, 1 mL cement was enough to significantly increase failure load, while 3 mL led to further significant improvement in the upper thoracic, lower thoracic and lumbar regions. Conclusion. Conventional, solid pedicle screws augmented with high-viscosity cement provided comparable screw stability in pull-out testing to that of sophisticated and more expensive fenestrated screws. In terms of cement volume, we recommend the use of at least 1 mL in the thoracic and 3 mL in the lumbar spine. Cite this article: C. I. Leichtle, A. Lorenz, S. Rothstock, J. Happel, F. Walter, T. Shiozawa, U. G. Leichtle. Pull-out strength of cemented solid versus fenestrated pedicle screws in osteoporotic vertebrae. Bone Joint Res 2016;5:419–426


Bone & Joint Open
Vol. 2, Issue 3 | Pages 163 - 173
1 Mar 2021
Schlösser TPC Garrido E Tsirikos AI McMaster MJ

Aims

High-grade dysplastic spondylolisthesis is a disabling disorder for which many different operative techniques have been described. The aim of this study is to evaluate Scoliosis Research Society 22-item (SRS-22r) scores, global balance, and regional spino-pelvic alignment from two to 25 years after surgery for high-grade dysplastic spondylolisthesis using an all-posterior partial reduction, transfixation technique.

Methods

SRS-22r and full-spine lateral radiographs were collected for the 28 young patients (age 13.4 years (SD 2.6) who underwent surgery for high-grade dysplastic spondylolisthesis in our centre (Scottish National Spinal Deformity Service) between 1995 and 2018. The mean follow-up was nine years (2 to 25), and one patient was lost to follow-up. The standard surgical technique was an all-posterior, partial reduction, and S1 to L5 transfixation screw technique without direct decompression. Parameters for segmental (slip percentage, Dubousset’s lumbosacral angle) and regional alignment (pelvic tilt, sacral slope, L5 incidence, lumbar lordosis, and thoracic kyphosis) and global balance (T1 spino-pelvic inclination) were measured. SRS-22r scores were compared between patients with a balanced and unbalanced pelvis at final follow-up.


Bone & Joint Research
Vol. 5, Issue 6 | Pages 239 - 246
1 Jun 2016
Li P Qian L Wu WD Wu CF Ouyang J

Objectives. Pedicle-lengthening osteotomy is a novel surgery for lumbar spinal stenosis (LSS), which achieves substantial enlargement of the spinal canal by expansion of the bilateral pedicle osteotomy sites. Few studies have evaluated the impact of this new surgery on spinal canal volume (SCV) and neural foramen dimension (NFD) in three different types of LSS patients. Methods. CT scans were performed on 36 LSS patients (12 central canal stenosis (CCS), 12 lateral recess stenosis (LRS), and 12 foraminal stenosis (FS)) at L4-L5, and on 12 normal (control) subjects. Mimics 14.01 workstation was used to reconstruct 3D models of the L4-L5 vertebrae and discs. SCV and NFD were measured after 1 mm, 2 mm, 3 mm, 4 mm, or 5 mm pedicle-lengthening osteotomies at L4 and/or L5. One-way analysis of variance was used to examine between-group differences. Results. In the intact state, SVC and NFD were significantly larger in the control group compared with the LSS groups (P<0.05). After lengthening at L4, the percentage increase in SCV (per millimetre) was LRS>CCS>FS>Control. After lengthening at L5 and L4-L5, the percentage increase in SCV (per millimetre) was LRS>FS>CCS>Control. After lengthening at L4 and L4-L5, the percentage increase in NFD (per millimetre) was FS>CCS>LRS>Control. After lengthening at L5, the percentage increase in NFD (per millimetre) was CCS>LRS>control>FS. Conclusions. LRS patients are the most suitable candidates for treatment with pedicle-lengthening osteotomy. Lengthening L4 pedicles produced larger percentage increases in NFD than lengthening L5 pedicles (p < 0.05). Lengthening L4 pedicles may be the most effective option for relieving foraminal compression in LSS patients. Cite this article: P. Li, L. Qian, W. D. Wu, C. F. Wu, J. Ouyang. Impact of pedicle-lengthening osteotomy on spinal canal volume and neural foramen size in three types of lumbar spinal stenosis. Bone Joint Res 2016;5:239–246. DOI: 10.1302/2046-3758.56.2000469


Bone & Joint Research
Vol. 5, Issue 4 | Pages 145 - 152
1 Apr 2016
Bodalia PN Balaji V Kaila R Wilson L

Objectives. We performed a systematic review of the literature to determine the safety and efficacy of bone morphogenetic protein (BMP) compared with bone graft when used specifically for revision spinal fusion surgery secondary to pseudarthrosis. Methods. The MEDLINE, EMBASE and Cochrane Library databases were searched using defined search terms. The primary outcome measure was spinal fusion, assessed as success or failure in accordance with radiograph, MRI or CT scan review at 24-month follow-up. The secondary outcome measure was time to fusion. Results. A total of six studies (three prospective and three retrospective) reporting on the use of BMP2 met the inclusion criteria (203 patients). Of these, four provided a comparison of BMP2 and bone graft whereas the other two solely investigated the use of BMP2. The primary outcome was seen in 92.3% (108/117) of patients following surgery with BMP2. Although none of the studies showed superiority of BMP2 to bone graft for fusion, its use was associated with a statistically quicker time to achieving fusion. BMP2 did not appear to increase the risk of complication. Conclusion. The use of BMP2 is both safe and effective within the revision setting, ideally in cases where bone graft is unavailable or undesirable. Further research is required to define its optimum role. Cite this article: Mr P. Bodalia. Effectiveness and safety of recombinant human bone morphogenetic protein-2 for adults with lumbar spine pseudarthrosis following spinal fusion surgery: A systematic review. Bone Joint Res 2016;5:145–152. DOI: 10.1302/2046-3758.54.2000418


The Bone & Joint Journal
Vol. 102-B, Issue 6 | Pages 671 - 676
1 Jun 2020
Giorgi PD Villa F Gallazzi E Debernardi A Schirò GR Crisà FM Talamonti G D’Aliberti G

Aims

The current pandemic caused by COVID-19 is the biggest challenge for national health systems for a century. While most medical resources are allocated to treat COVID-19 patients, several non-COVID-19 medical emergencies still need to be treated, including vertebral fractures and spinal cord compression. The aim of this paper is to report the early experience and an organizational protocol for emergency spinal surgery currently being used in a large metropolitan area by an integrated team of orthopaedic surgeons and neurosurgeons.

Methods

An organizational model is presented based on case centralization in hub hospitals and early management of surgical cases to reduce hospital stay. Data from all the patients admitted for emergency spinal surgery from the beginning of the outbreak were prospectively collected and compared to data from patients admitted for the same reason in the same time span in the previous year, and treated by the same integrated team.


Bone & Joint Research
Vol. 5, Issue 2 | Pages 46 - 51
1 Feb 2016
Du J Wu J Wen Z Lin X

Objectives

To employ a simple and fast method to evaluate those patients with neurological deficits and misplaced screws in relatively safe lumbosacral spine, and to determine if it is necessary to undertake revision surgery.

Methods

A total of 316 patients were treated by fixation of lumbar and lumbosacral transpedicle screws at our institution from January 2011 to December 2012. We designed the criteria for post-operative revision scores of pedicle screw malpositioning (PRSPSM) in the lumbosacral canal. We recommend the revision of the misplaced pedicle screw in patients with PRSPSM = 5′ as early as possible. However, patients with PRSPSM < 5′ need to follow the next consecutive assessment procedures. A total of 15 patients were included according to at least three-stage follow-up.


The Bone & Joint Journal
Vol. 97-B, Issue 10 | Pages 1390 - 1394
1 Oct 2015
Todd NV

There is no universally agreed definition of cauda equina syndrome (CES). Clinical signs of CES including direct rectal examination (DRE) do not reliably correlate with cauda equina (CE) compression on MRI. Clinical assessment only becomes reliable if there are symptoms/signs of late, often irreversible, CES. The only reliable way of including or excluding CES is to perform MRI on all patients with suspected CES. If the diagnosis is being considered, MRI should ideally be performed locally in the District General Hospitals within one hour of the question being raised irrespective of the hour or the day. Patients with symptoms and signs of CES and MRI confirmed CE compression should be referred to the local spinal service for emergency surgery.

CES can be subdivided by the degree of neurological deficit (bilateral radiculopathy, incomplete CES or CES with retention of urine) and also by time to surgical treatment (12, 24, 48 or 72 hour). There is increasing understanding that damage to the cauda equina nerve roots occurs in a continuous and progressive fashion which implies that there are no safe time or deficit thresholds. Neurological deterioration can occur rapidly and is often associated with longterm poor outcomes. It is not possible to predict which patients with a large central disc prolapse compressing the CE nerve roots are going to deteriorate neurologically nor how rapidly. Consensus guidelines from the Society of British Neurological Surgeons and British Association of Spinal Surgeons recommend decompressive surgery as soon as practically possible which for many patients will be urgent/emergency surgery at any hour of the day or night.

Cite this article: Bone Joint J 2015;97-B:1390–4


Bone & Joint 360
Vol. 3, Issue 5 | Pages 39 - 40
1 Oct 2014
Foy MA