Advertisement for orthosearch.org.uk
Results 1 - 20 of 32
Results per page:
Bone & Joint Research
Vol. 5, Issue 7 | Pages 307 - 313
1 Jul 2016
Sandgren B Skorpil M Nowik P Olivecrona H Crafoord J Weidenhielm L Persson A

Objectives. Computed tomography (CT) plays an important role in evaluating wear and periacetabular osteolysis (PAO) in total hip replacements. One concern with CT is the high radiation exposure since standard pelvic CT provides approximately 3.5 millisieverts (mSv) of radiation exposure, whereas a planar radiographic examination with three projections totals approximately 0.5 mSv. The objective of this study was to evaluate the lowest acceptable radiation dose for dual-energy CT (DECT) images when measuring wear and periacetabular osteolysis in uncemented metal components. Materials and Methods. A porcine pelvis with bilateral uncemented hip prostheses and with known linear wear and acetabular bone defects was examined in a third-generation multidetector DECT scanner. The examinations were performed with four different radiation levels both with and without iterative reconstruction techniques. From the high and low peak kilo voltage acquisitions, polychrmoatic images were created together with virtual monochromatic images of energies 100 kiloelectron volts (keV) and 150 keV. Results. We could assess wear and PAO while substantially lowering the effective radiation dose to 0.7 mSv for a total pelvic view with an accuracy of around 0.5 mm for linear wear and 2 mm to 3 mm for PAO. Conclusion. CT for detection of prosthetic wear and PAO could be used with clinically acceptable accuracy at a radiation exposure level equal to plain radiographic exposures. Cite this article: B. Sandgren, M. Skorpil, P. Nowik, H. Olivecrona, J. Crafoord, L. Weidenhielm, A. Persson. Assessment of wear and periacetabular osteolysis using dual energy computed tomography on a pig cadaver to identify the lowest acceptable radiation dose. Bone Joint Res 2016;5:307–313. DOI: 10.1302/2046-3758.57.2000566


Bone & Joint Open
Vol. 5, Issue 2 | Pages 79 - 86
1 Feb 2024
Sato R Hamada H Uemura K Takashima K Ando W Takao M Saito M Sugano N

Aims

This study aimed to investigate the incidence of ≥ 5 mm asymmetry in lower and whole leg lengths (LLs) in patients with unilateral osteoarthritis (OA) secondary to developmental dysplasia of the hip (DDH-OA) and primary hip osteoarthritis (PHOA), and the relationship between lower and whole LL asymmetries and femoral length asymmetry.

Methods

In total, 116 patients who underwent unilateral total hip arthroplasty were included in this study. Of these, 93 had DDH-OA and 23 had PHOA. Patients with DDH-OA were categorized into three groups: Crowe grade I, II/III, and IV. Anatomical femoral length, femoral length greater trochanter (GT), femoral length lesser trochanter (LT), tibial length, foot height, lower LL, and whole LL were evaluated using preoperative CT data of the whole leg in the supine position. Asymmetry was evaluated in the Crowe I, II/III, IV, and PHOA groups.


Bone & Joint Research
Vol. 4, Issue 12 | Pages 190 - 194
1 Dec 2015
Kleinlugtenbelt YV Hoekstra M Ham SJ Kloen P Haverlag R Simons MP Bhandari M Goslings JC Poolman RW Scholtes VAB

Objectives

Current studies on the additional benefit of using computed tomography (CT) in order to evaluate the surgeons’ agreement on treatment plans for fracture are inconsistent. This inconsistency can be explained by a methodological phenomenon called ‘spectrum bias’, defined as the bias inherent when investigators choose a population lacking therapeutic uncertainty for evaluation. The aim of the study is to determine the influence of spectrum bias on the intra-observer agreement of treatment plans for fractures of the distal radius.

Methods

Four surgeons evaluated 51 patients with displaced fractures of the distal radius at four time points: T1 and T2: conventional radiographs; T3 and T4: radiographs and additional CT scan (radiograph and CT). Choice of treatment plan (operative or non-operative) and therapeutic certainty (five-point scale: very uncertain to very certain) were rated. To determine the influence of spectrum bias, the intra-observer agreement was analysed, using Kappa statistics, for each degree of therapeutic certainty.


Bone & Joint Research
Vol. 2, Issue 12 | Pages 255 - 263
1 Dec 2013
Zhang Y Xu J Wang X Huang J Zhang C Chen L Wang C Ma X

Objective. The objective of this study was to evaluate the rotation and translation of each joint in the hindfoot and compare the load response in healthy feet with that in stage II posterior tibial tendon dysfunction (PTTD) flatfoot by analysing the reconstructive three-dimensional (3D) computed tomography (CT) image data during simulated weight-bearing. . Methods. CT scans of 15 healthy feet and 15 feet with stage II PTTD flatfoot were taken first in a non-weight-bearing condition, followed by a simulated full-body weight-bearing condition. The images of the hindfoot bones were reconstructed into 3D models. The ‘twice registration’ method in three planes was used to calculate the position of the talus relative to the calcaneus in the talocalcaneal joint, the navicular relative to the talus in talonavicular joint, and the cuboid relative to the calcaneus in the calcaneocuboid joint. Results. From non- to full-body-weight-bearing condition, the difference in the talus position relative to the calcaneus in the talocalcaneal joint was 0.6° more dorsiflexed (p = 0.032), 1.4° more everted (p = 0.026), 0.9 mm more anterior (p = 0.031) and 1.0 mm more proximal (p = 0.004) in stage II PTTD flatfoot compared with that in a healthy foot. The navicular position difference relative to the talus in the talonavicular joint was 3° more everted (p = 0.012), 1.3 mm more lateral (p = 0.024), 0.8 mm more anterior (p = 0.037) and 2.1 mm more proximal (p = 0.017). The cuboid position difference relative to the calcaneus in the calcaneocuboid joint did not change significantly in rotation and translation (all p ≥ 0.08). . Conclusion. Referring to a previous study regarding both the cadaveric foot and the live foot, joint instability occurred in the hindfoot in simulated weight-bearing condition in patients with stage II PTTD flatfoot. The method used in this study might be applied to clinical analysis of the aetiology and evolution of PTTD flatfoot, and may inform biomechanical analyses of the effects of foot surgery in the future. Cite this article: Bone Joint Res 2013;2:255–63


Bone & Joint Open
Vol. 5, Issue 4 | Pages 367 - 373
26 Apr 2024
Reinhard J Lang S Walter N Schindler M Bärtl S Szymski D Alt V Rupp M

Aims

Periprosthetic joint infection (PJI) demonstrates the most feared complication after total joint replacement (TJR). The current work analyzes the demographic, comorbidity, and complication profiles of all patients who had in-hospital treatment due to PJI. Furthermore, it aims to evaluate the in-hospital mortality of patients with PJI and analyze possible risk factors in terms of secondary diagnosis, diagnostic procedures, and complications.

Methods

In a retrospective, cross-sectional study design, we gathered all patients with PJI (International Classification of Diseases (ICD)-10 code: T84.5) and resulting in-hospital treatment in Germany between 1 January 2019 and 31 December 2022. Data were provided by the Institute for the Hospital Remuneration System in Germany. Demographic data, in-hospital deaths, need for intensive care therapy, secondary diagnosis, complications, and use of diagnostic instruments were assessed. Odds ratios (ORs) with 95% confidence intervals (CIs) for in-hospital mortality were calculated.


Bone & Joint Research
Vol. 11, Issue 6 | Pages 398 - 408
22 Jun 2022
Xu T Zeng Y Yang X Liu G Lv T Yang H Jiang F Chen Y

Aims

We aimed to evaluate the utility of 68Ga-citrate positron emission tomography (PET)/CT in the differentiation of periprosthetic joint infection (PJI) and aseptic loosening (AL), and compare it with 99mTc-methylene bisphosphonates (99mTc-MDP) bone scan.

Methods

We studied 39 patients with suspected PJI or AL. These patients underwent 68Ga-citrate PET/CT, 99mTc-MDP three-phase bone scan and single-photon emission CT (SPECT)/CT. PET/CT was performed at ten minutes and 60 minutes after injection, respectively. Images were evaluated by three nuclear medicine doctors based on: 1) visual analysis of the three methods based on tracer uptake model, and PET images attenuation-corrected with CT and those not attenuation-corrected with CT were analyzed, respectively; and 2) semi-quantitative analysis of PET/CT: maximum standardized uptake value (SUVmax) of lesions, SUVmax of the lesion/SUVmean of the normal bone, and SUVmax of the lesion/SUVmean of the normal muscle. The final diagnosis was based on the clinical and intraoperative findings, and histopathological and microbiological examinations.


Bone & Joint Open
Vol. 2, Issue 7 | Pages 515 - 521
12 Jul 2021
Crookes PF Cassidy RS Machowicz A Hill JC McCaffrey J Turner G Beverland D

Aims

We studied the outcomes of hip and knee arthroplasties in a high-volume arthroplasty centre to determine if patients with morbid obesity (BMI ≥ 40 kg/m2) had unacceptably worse outcomes as compared to those with BMI < 40 kg/m2.

Methods

In a two-year period, 4,711 patients had either total hip arthroplasty (THA; n = 2,370), total knee arthroplasty (TKA; n = 2,109), or unicompartmental knee arthroplasty (UKA; n = 232). Of these patients, 392 (8.3%) had morbid obesity. We compared duration of operation, anaesthetic time, length of stay (LOS), LOS > three days, out of hours attendance, emergency department attendance, readmission to hospital, return to theatre, and venous thromboembolism up to 90 days. Readmission for wound infection was recorded to one year. Oxford scores were recorded preoperatively and at one year postoperatively.


Bone & Joint Open
Vol. 1, Issue 7 | Pages 339 - 345
3 Jul 2020
MacDessi SJ Griffiths-Jones W Harris IA Bellemans J Chen DB

Aims

An algorithm to determine the constitutional alignment of the lower limb once arthritic deformity has occurred would be of value when undertaking kinematically aligned total knee arthroplasty (TKA). The purpose of this study was to determine if the arithmetic hip-knee-ankle angle (aHKA) algorithm could estimate the constitutional alignment of the lower limb following development of significant arthritis.

Methods

A matched-pairs radiological study was undertaken comparing the aHKA of an osteoarthritic knee (aHKA-OA) with the mechanical HKA of the contralateral normal knee (mHKA-N). Patients with Grade 3 or 4 Kellgren-Lawrence tibiofemoral osteoarthritis in an arthritic knee undergoing TKA and Grade 0 or 1 osteoarthritis in the contralateral normal knee were included. The aHKA algorithm subtracts the lateral distal femoral angle (LDFA) from the medial proximal tibial angle (MPTA) measured on standing long leg radiographs. The primary outcome was the mean of the paired differences in the aHKA-OA and mHKA-N. Secondary outcomes included comparison of sex-based differences and capacity of the aHKA to determine the constitutional alignment based on degree of deformity.


Bone & Joint Research
Vol. 7, Issue 7 | Pages 485 - 493
1 Jul 2018
Numata Y Kaneuji A Kerboull L Takahashi E Ichiseki T Fukui K Tsujioka J Kawahara N

Objective

Cement thickness of at least 2 mm is generally associated with more favorable results for the femoral component in cemented hip arthroplasty. However, French-designed stems have shown favorable outcomes even with thin cement mantle. The biomechanical behaviors of a French stem, Charnley-Marcel-Kerboull (CMK) and cement were researched in this study.

Methods

Six polished CMK stems were implanted into a composite femur, and one million times dynamic loading tests were performed. Stem subsidence and the compressive force at the bone-cement interface were measured. Tantalum ball (ball) migration in the cement was analyzed by micro CT


Bone & Joint 360
Vol. 7, Issue 2 | Pages 2 - 7
1 Apr 2018
Das A Giddie J Ollivere B


Bone & Joint Research
Vol. 7, Issue 6 | Pages 430 - 439
1 Jun 2018
Eggermont F Derikx LC Verdonschot N van der Geest ICM de Jong MAA Snyers A van der Linden YM Tanck E

Objectives

In this prospective cohort study, we investigated whether patient-specific finite element (FE) models can identify patients at risk of a pathological femoral fracture resulting from metastatic bone disease, and compared these FE predictions with clinical assessments by experienced clinicians.

Methods

A total of 39 patients with non-fractured femoral metastatic lesions who were irradiated for pain were included from three radiotherapy institutes. During follow-up, nine pathological fractures occurred in seven patients. Quantitative CT-based FE models were generated for all patients. Femoral failure load was calculated and compared between the fractured and non-fractured femurs. Due to inter-scanner differences, patients were analyzed separately for the three institutes. In addition, the FE-based predictions were compared with fracture risk assessments by experienced clinicians.


Bone & Joint 360
Vol. 6, Issue 6 | Pages 14 - 16
1 Dec 2017


Bone & Joint Research
Vol. 6, Issue 10 | Pages 602 - 609
1 Oct 2017
Jin A Cobb J Hansen U Bhattacharya R Reinhard C Vo N Atwood R Li J Karunaratne A Wiles C Abel R

Objectives

Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in bone density, the impact of this class of drug on mechanical properties remains unclear. We therefore sought to quantify the mechanical strength of bone treated with BP (oral alendronate), and correlate data with the microarchitecture and density of microcracks in comparison with untreated controls.

Methods

Trabecular bone from hip fracture patients treated with BP (n = 10) was compared with naïve fractured (n = 14) and non-fractured controls (n = 6). Trabecular cores were synchrotron scanned and micro-CT scanned for microstructural analysis, including quantification of bone volume fraction, microarchitecture and microcracks. The specimens were then mechanically tested in compression.


Bone & Joint Research
Vol. 6, Issue 6 | Pages 358 - 365
1 Jun 2017
Sanghani-Kerai A Coathup M Samazideh S Kalia P Silvio LD Idowu B Blunn G

Objectives

Cellular movement and relocalisation are important for many physiologic properties. Local mesenchymal stem cells (MSCs) from injured tissues and circulating MSCs aid in fracture healing. Cytokines and chemokines such as Stromal cell-derived factor 1(SDF-1) and its receptor chemokine receptor type 4 (CXCR4) play important roles in maintaining mobilisation, trafficking and homing of stem cells from bone marrow to the site of injury. We investigated the differences in migration of MSCs from the femurs of young, adult and ovariectomised (OVX) rats and the effect of CXCR4 over-expression on their migration.

Methods

MSCs from young, adult and OVX rats were put in a Boyden chamber to establish their migration towards SDF-1. This was compared with MSCs transfected with CXCR4, as well as MSCs differentiated to osteoblasts.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 8 - 13
1 Jan 2017
Acklin YP Zderic I Grechenig S Richards RG Schmitz P Gueorguiev B

Objectives

Osteosynthesis of anterior pubic ramus fractures using one large-diameter screw can be challenging in terms of both surgical procedure and fixation stability. Small-fragment screws have the advantage of following the pelvic cortex and being more flexible.

The aim of the present study was to biomechanically compare retrograde intramedullary fixation of the superior pubic ramus using either one large- or two small-diameter screws.

Materials and Methods

A total of 12 human cadaveric hemipelvises were analysed in a matched pair study design. Bone mineral density of the specimens was 68 mgHA/cm3 (standard deviation (sd) 52). The anterior pelvic ring fracture was fixed with either one 7.3 mm cannulated screw (Group 1) or two 3.5 mm pelvic cortex screws (Group 2). Progressively increasing cyclic axial loading was applied through the acetabulum. Relative movements in terms of interfragmentary displacement and gap angle at the fracture site were evaluated by means of optical movement tracking. The Wilcoxon signed-rank test was applied to identify significant differences between the groups


Bone & Joint Research
Vol. 6, Issue 1 | Pages 43 - 51
1 Jan 2017
Nakamura S Tian Y Tanaka Y Kuriyama S Ito H Furu M Matsuda S

Objectives

Little biomechanical information is available about kinematically aligned (KA) total knee arthroplasty (TKA). The purpose of this study was to simulate the kinematics and kinetics after KA TKA and mechanically aligned (MA) TKA with four different limb alignments.

Materials and Methods

Bone models were constructed from one volunteer (normal) and three patients with three different knee deformities (slight, moderate and severe varus). A dynamic musculoskeletal modelling system was used to analyse the kinematics and the tibiofemoral contact force. The contact stress on the tibial insert, and the stress to the resection surface and medial tibial cortex were examined by using finite element analysis.


Bone & Joint Research
Vol. 5, Issue 11 | Pages 552 - 559
1 Nov 2016
Kang K Koh Y Son J Kwon O Baek C Jung SH Park KK

Objectives

Malrotation of the femoral component can result in post-operative complications in total knee arthroplasty (TKA), including patellar maltracking. Therefore, we used computational simulation to investigate the influence of femoral malrotation on contact stresses on the polyethylene (PE) insert and on the patellar button as well as on the forces on the collateral ligaments.

Materials and Methods

Validated finite element (FE) models, for internal and external malrotations from 0° to 10° with regard to the neutral position, were developed to evaluate the effect of malrotation on the femoral component in TKA. Femoral malrotation in TKA on the knee joint was simulated in walking stance-phase gait and squat loading conditions.


Bone & Joint Research
Vol. 5, Issue 4 | Pages 116 - 121
1 Apr 2016
Leow JM Clement ND Tawonsawatruk T Simpson CJ Simpson AHRW

Objectives

The radiographic union score for tibial (RUST) fractures was developed by Whelan et al to assess the healing of tibial fractures following intramedullary nailing. In the current study, the repeatability and reliability of the RUST score was evaluated in an independent centre (a) using the original description, (b) after further interpretation of the description of the score, and (c) with the immediate post-operative radiograph available for comparison.

Methods

A total of 15 radiographs of tibial shaft fractures treated by intramedullary nailing (IM) were scored by three observers using the RUST system. Following discussion on how the criteria of the RUST system should be implemented, 45 sets (i.e. AP and lateral) of radiographs of IM nailed tibial fractures were scored by five observers. Finally, these 45 sets of radiographs were rescored with the baseline post-operative radiograph available for comparison.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 362 - 369
1 Sep 2016
Oba M Inaba Y Kobayashi N Ike H Tezuka T Saito T

Objectives

In total hip arthroplasty (THA), the cementless, tapered-wedge stem design contributes to achieving initial stability and providing optimal load transfer in the proximal femur. However, loading conditions on the femur following THA are also influenced by femoral structure. Therefore, we determined the effects of tapered-wedge stems on the load distribution of the femur using subject-specific finite element models of femurs with various canal shapes.

Patients and Methods

We studied 20 femurs, including seven champagne flute-type femurs, five stovepipe-type femurs, and eight intermediate-type femurs, in patients who had undergone cementless THA using the Accolade TMZF stem at our institution. Subject–specific finite element (FE) models of pre- and post-operative femurs with stems were constructed and used to perform FE analyses (FEAs) to simulate single-leg stance. FEA predictions were compared with changes in bone mineral density (BMD) measured for each patient during the first post-operative year.


Bone & Joint Research
Vol. 5, Issue 6 | Pages 239 - 246
1 Jun 2016
Li P Qian L Wu WD Wu CF Ouyang J

Objectives

Pedicle-lengthening osteotomy is a novel surgery for lumbar spinal stenosis (LSS), which achieves substantial enlargement of the spinal canal by expansion of the bilateral pedicle osteotomy sites. Few studies have evaluated the impact of this new surgery on spinal canal volume (SCV) and neural foramen dimension (NFD) in three different types of LSS patients.

Methods

CT scans were performed on 36 LSS patients (12 central canal stenosis (CCS), 12 lateral recess stenosis (LRS), and 12 foraminal stenosis (FS)) at L4-L5, and on 12 normal (control) subjects. Mimics 14.01 workstation was used to reconstruct 3D models of the L4-L5 vertebrae and discs. SCV and NFD were measured after 1 mm, 2 mm, 3 mm, 4 mm, or 5 mm pedicle-lengthening osteotomies at L4 and/or L5. One-way analysis of variance was used to examine between-group differences.