Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Bone & Joint Research
Vol. 6, Issue 8 | Pages 499 - 505
1 Aug 2017
Morrison RJM Tsang B Fishley W Harper I Joseph JC Reed MR

Objectives. We have increased the dose of tranexamic acid (TXA) in our enhanced total joint recovery protocol at our institution from 15 mg/kg to 30 mg/kg (maximum 2.5 g) as a single, intravenous (IV) dose. We report the clinical effect of this dosage change. Methods. We retrospectively compared two cohorts of consecutive patients undergoing total hip arthroplasty (THA) or total knee arthroplasty (TKA) surgery in our unit between 2008 and 2013. One group received IV TXA 15 mg/kg, maximum 1.2 g, and the other 30 mg/kg, maximum 2.5 g as a single pre-operative dose. The primary outcome for this study was the requirement for blood transfusion within 30 days of surgery. Secondary measures included length of hospital stay, critical care requirements, re-admission rate, medical complications and mortality rates. Results. A total of 1914 THA and 2537 TKA procedures were evaluated. In THA, the higher dose of TXA was associated with a significant reduction in transfusion (p = 0.02, risk ratio (RR) 0.74, 95% confidence interval (CI) 0.58 to 0.96) and rate of re-admission (p < 0.001, RR 0.50, 95% CI 0.35 to 0.71). There were reductions in the requirement for critical care (p = 0.06, RR 0.55, 95% CI 0.31 to 1.00), and in the length of stay from 4.7 to 4.3 days (p = 0.02). In TKA, transfusion requirements (p = 0.049, RR 0.64, 95% CI 0.41 to 0.99), re-admission rate (p = 0.001, RR 0.56, 95% CI 0.39 to 0.80) and critical care requirements (p < 0.003, RR 0.34, 95% CI 0.16 to 0.72) were reduced with the higher dose. Mean length of stay reduced from 4.6 days to 3.6 days (p < 0.01). There was no difference in the incidence of deep vein thrombosis, pulmonary embolism, gastrointestinal bleed, myocardial infarction, stroke or death in THA and TKA between cohorts. Conclusion. We suggest that a single pre-operative dose of TXA, 30 mg/kg, maximum 2.5g, results in a lower transfusion requirement compared with a lower dose in patients undergoing elective primary hip and knee arthroplasty. However, these findings should be interpreted in the context of the retrospective non-randomised study design. Cite this article: R. J. M. Morrison, B. Tsang, W. Fishley, I. Harper, J. C. Joseph, M. R. Reed. Dose optimisation of intravenous tranexamic acid for elective hip and knee arthroplasty: The effectiveness of a single pre-operative dose. Bone Joint Res 2017;6:499–505. DOI: 10.1302/2046-3758.68.BJR-2017-0005.R1


Bone & Joint Research
Vol. 2, Issue 10 | Pages 220 - 226
1 Oct 2013
Chang Y Tai C Hsieh P Ueng SWN

Objectives . The objective of this study is to determine an optimal antibiotic-loaded bone cement (ALBC) for infection prophylaxis in total joint arthroplasty (TJA). Methods. We evaluated the antibacterial effects of polymethylmethacrylate (PMMA) bone cements loaded with vancomycin, teicoplanin, ceftazidime, imipenem, piperacillin, gentamicin, and tobramycin against methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staph. aureus (MRSA), coagulase-negative staphylococci (CoNS), Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Standardised cement specimens made from 40 g PMMA loaded with 1 g antibiotics were tested for elution characteristics, antibacterial activities, and compressive strength in vitro. . Results. The ALBC containing gentamicin provided a much longer duration of antibiotic release than those containing other antibiotic. Imipenem-loading on the cement had a significant adverse effect on the compressive strength of the ALBC, which made it insufficient for use in prosthesis fixation. All of the tested antibiotics maintained their antibacterial properties after being mixed with PMMA. The gentamicin-loaded ALBC provided a broad antibacterial spectrum against all the test organisms and had the greatest duration of antibacterial activity against MSSA, CoNS, P. aeruginosa and E. coli. . Conclusion. When considering the use of ALBC as infection prophylaxis in TJA, gentamicin-loaded ALBC may be a very effective choice. Cite this article: Bone Joint Res 2013;2:220–6


Bone & Joint 360
Vol. 3, Issue 4 | Pages 35 - 38
1 Aug 2014
Hammerberg EM


Bone & Joint Research
Vol. 2, Issue 9 | Pages 193 - 199
1 Sep 2013
Myers KR Sgaglione NA Grande DA

The treatment of osteochondral lesions and osteoarthritis remains an ongoing clinical challenge in orthopaedics. This review examines the current research in the fields of cartilage regeneration, osteochondral defect treatment, and biological joint resurfacing, and reports on the results of clinical and pre-clinical studies. We also report on novel treatment strategies and discuss their potential promise or pitfalls. Current focus involves the use of a scaffold providing mechanical support with the addition of chondrocytes or mesenchymal stem cells (MSCs), or the use of cell homing to differentiate the organism’s own endogenous cell sources into cartilage. This method is usually performed with scaffolds that have been coated with a chemotactic agent or with structures that support the sustained release of growth factors or other chondroinductive agents. We also discuss unique methods and designs for cell homing and scaffold production, and improvements in biological joint resurfacing. There have been a number of exciting new studies and techniques developed that aim to repair or restore osteochondral lesions and to treat larger defects or the entire articular surface. The concept of a biological total joint replacement appears to have much potential.

Cite this article: Bone Joint Res 2013;2:193–9.