Aims. The aim of this investigation was to compare risk of infection in both cemented and uncemented hemiarthroplasty (HA) as well as in
Aims. To investigate the optimal thresholds and diagnostic efficacy of commonly used serological and synovial fluid detection indexes for diagnosing periprosthetic joint infection (PJI) in patients who have rheumatoid arthritis (RA). Methods. The data from 348 patients who had RA or osteoarthritis (OA) and had previously undergone a total knee (TKA) and/or a
This study aimed to evaluate the BioFire Joint Infection (JI) Panel in cases of hip and knee periprosthetic joint infection (PJI) where conventional microbiology is unclear, and to assess its role as a complementary intraoperative diagnostic tool. Five groups representing common microbiological scenarios in hip and knee revision arthroplasty were selected from our arthroplasty registry, prospectively maintained PJI databases, and biobank: 1) unexpected-negative cultures (UNCs), 2) unexpected-positive cultures (UPCs), 3) single-positive intraoperative cultures (SPCs), and 4) clearly septic and 5) aseptic cases. In total, 268 archived synovial fluid samples from 195 patients who underwent acute/chronic revision total hip or knee arthroplasty were included. Cases were classified according to the International Consensus Meeting 2018 criteria. JI panel evaluation of synovial fluid was performed, and the results were compared with cultures.Aims
Methods
Although low-intensity pulsed ultrasound (LIPUS) combined with disinfectants has been shown to effectively eliminate portions of biofilm in vitro, its efficacy in vivo remains uncertain. Our objective was to assess the antibiofilm potential and safety of LIPUS combined with 0.35% povidone-iodine (PI) in a rat debridement, antibiotics, and implant retention (DAIR) model of periprosthetic joint infection (PJI). A total of 56 male Sprague-Dawley rats were established in acute PJI models by intra-articular injection of bacteria. The rats were divided into four groups: a Control group, a 0.35% PI group, a LIPUS and saline group, and a LIPUS and 0.35% PI group. All rats underwent DAIR, except for Control, which underwent a sham procedure. General status, serum biochemical markers, weightbearing analysis, radiographs, micro-CT analysis, scanning electron microscopy of the prostheses, microbiological analysis, macroscope, and histopathology evaluation were performed 14 days after DAIR.Aims
Methods
We compared the risks of re-revision and mortality between two-stage and single-stage revision surgeries among patients with infected primary hip arthroplasty. Patients with a periprosthetic joint infection (PJI) of their primary arthroplasty revised with single-stage or two-stage procedure in England and Wales between 2003 and 2014 were identified from the National Joint Registry. We used Poisson regression with restricted cubic splines to compute hazard ratios (HRs) at different postoperative periods. The total number of revisions and re-revisions undergone by patients was compared between the two strategies.Aims
Methods
The mechanism by which synovial fluid (SF) kills bacteria has not yet been elucidated, and a better understanding is needed. We sought to analyze the antimicrobial properties of exogenous copper in human SF against We performed in vitro growth and viability assays to determine the capability of Aims
Methods
This study evaluated the definitions developed by the European Bone and Joint Infection Society (EBJIS) 2021, the International Consensus Meeting (ICM) 2018, and the Infectious Diseases Society of America (IDSA) 2013, for the diagnosis of periprosthetic joint infection (PJI). In this single-centre, retrospective analysis of prospectively collected data, patients with an indicated revision surgery after a total hip or knee arthroplasty were included between 2015 and 2020. A standardized diagnostic workup was performed, identifying the components of the EBJIS, ICM, and IDSA criteria in each patient.Aims
Methods
Treatment outcomes for methicillin-resistant Total knee arthroplasty (TKA), MRSA inoculation, debridement, and vancomycin-spacer implantation were performed successively in rats to mimic first-stage PJI during the two-stage revision arthroplasty procedure. Vancomycin was administered intraperitoneally or intra-articularly for two weeks to control the infection after debridement and spacer implantation.Aims
Methods
Histology is an established tool in diagnosing periprosthetic joint infections (PJIs). Different thresholds, using various infection definitions and histopathological criteria, have been described. This study determined the performance of different thresholds of polymorphonuclear neutrophils (≥ 5 PMN/HPF, ≥ 10 PMN/HPF, ≥ 23 PMN/10 HPF) , when using the European Bone and Joint Infection Society (EBJIS), Infectious Diseases Society of America (IDSA), and the International Consensus Meeting (ICM) 2018 criteria for PJI. A total of 119 patients undergoing revision total hip (rTHA) or knee arthroplasty (rTKA) were included. Permanent histology sections of periprosthetic tissue were evaluated under high power (400× magnification) and neutrophils were counted per HPF. The mean neutrophil count in ten HPFs was calculated (PMN/HPF). Based on receiver operating characteristic (ROC) curve analysis and the z-test, thresholds were compared.Aims
Methods
The efficacy and safety of intrawound vancomycin for preventing surgical site infection in primary hip and knee arthroplasty is uncertain. A systematic review of the literature was conducted, indexed from inception to March 2020 in PubMed, Web of Science, Cochrane Library, Embase, and Google Scholar databases. All studies evaluating the efficacy and/or safety of intrawound vancomycin in patients who underwent primary hip and knee arthroplasty were included. Incidence of periprosthetic joint infection (PJI), superficial infection, aseptic wound complications, acute kidney injury, anaphylactic reaction, and ototoxicity were meta-analyzed. Results were reported as odds ratios (ORs) and 95% confidence intervals (CIs). The quality of included studies was assessed using the risk of bias in non-randomized studies of interventions (ROBINS-I) assessment tool.Aims
Methods
Microbiological culture is a key element in the diagnosis of periprosthetic joint infection (PJI). However, cultures of periprosthetic tissue do not have optimal sensitivity. One of the main reasons for this is that microorganisms are not released from the tissues, either due to biofilm formation or intracellular persistence. This study aimed to optimize tissue pretreatment methods in order to improve detection of microorganisms. From December 2017 to September 2019, patients undergoing revision arthroplasty in a single centre due to PJI and aseptic failure (AF) were included, with demographic data and laboratory test results recorded prospectively. Periprosthetic tissue samples were collected intraoperatively and assigned to tissue-mechanical homogenization (T-MH), tissue-manual milling (T-MM), tissue-dithiothreitol (T-DTT) treatment, tissue-sonication (T-S), and tissue-direct culture (T-D). The yield of the microbial cultures was then analyzed.Aims
Methods
Periprosthetic joint infection (PJI) is a debilitating condition with a substantial socioeconomic burden. A novel autologous blood glue (ABG) has been developed, which can be prepared during surgery and sprayed onto prostheses at the time of implantation. The ABG can potentially provide an antimicrobial coating which will be effective in preventing PJI, not only by providing a physical barrier but also by eluting a well-known antibiotic. Hence, this study aimed to assess the antimicrobial effectiveness of ABG when impregnated with gentamicin and stem cells. Gentamicin elution from the ABG matrix was analyzed and quantified in a time-dependent manner. The combined efficiency of gentamicin and ABG as an anti-biofilm coating was investigated on titanium disks.Aims
Methods
This study explores the reported rate of surgical site infection (SSI) after hip fracture surgery in published studies concerning patients treated in the UK. Studies were included if they reported on SSI after any type of surgical treatment for hip fracture. Each study required a minimum of 30 days follow-up and 100 patients. Meta-analysis was undertaken using a random effects model. Heterogeneity was expressed using the I2 statistic. Risk of bias was assessed using a modified Newcastle-Ottawa Scale (NOS) system.Aims
Methods
This study aimed to evaluate calprotectin in synovial fluid for diagnosing chronic prosthetic joint infection (PJI) . A total of 63 patients who were suspected of PJI were enrolled. The synovial fluid calprotectin was tested by an enzyme-linked immunosorbent assay (ELISA). Laboratory test data, such as ESR, CRP, synovial fluid white blood cells (SF-WBCs), and synovial fluid polymorphonuclear cells (SF-PMNs), were documented. Chi-squared tests were used to compare the sensitivity and specificity of calprotectin and laboratory tests. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was calculated to determine diagnostic efficacy.Aims
Methods
The aim of this study was to evaluate the performance of metagenomic next-generation sequencing (mNGS) in detecting pathogens from synovial fluid of prosthetic joint infection (PJI) patients. A group of 75 patients who underwent revision knee or hip arthroplasties were enrolled prospectively. Ten patients with primary arthroplasties were included as negative controls. Synovial fluid was collected for mNGS analysis. Optimal thresholds were determined to distinguish pathogens from background microbes. Synovial fluid, tissue, and sonicate fluid were obtained for culture.Aims
Methods
Biofilm formation is intrinsic to prosthetic joint infection (PJI). In the current study, we evaluated the effects of silver-containing hydroxyapatite (Ag-HA) coating and vancomycin (VCM) on methicillin-resistant Pure titanium discs (Ti discs), Ti discs coated with HA (HA discs), and 3% Ag-HA discs developed using a thermal spraying were inoculated with MRSA suspensions containing a mean in vitro 4.3 (SD 0.8) x 106 or 43.0 (SD 8.4) x 105 colony-forming units (CFUs). Immediately after MRSA inoculation, sterile phosphate-buffered saline or VCM (20 µg/ml) was added, and the discs were incubated for 24 hours at 37°C. Viable cell counting, 3D confocal laser scanning microscopy with Airyscan, and scanning electron microscopy were then performed. HA discs and Ag HA discs were implanted subcutaneously in vivo in the dorsum of rats, and MRSA suspensions containing a mean in vivo 7.2 (SD 0.4) x 106 or 72.0 (SD 4.2) x 105 CFUs were inoculated on the discs. VCM was injected subcutaneously daily every 12 hours followed by viable cell counting.Aims
Methods
Preclinical data showed poly(methyl methacrylate) (PMMA) loaded with microsilver to be effective against a variety of bacteria. The purpose of this study was to assess patient safety of PMMA spacers with microsilver in prosthetic hip infections in a prospective cohort study. A total of 12 patients with prosthetic hip infections were included for a three-stage revision procedure. All patients received either a gentamicin-PMMA spacer (80 g to 160 g PMMA depending on hip joint dimension) with additional loading of 1% (w/w) of microsilver (0.8 g to 1.6 g per spacer) at surgery 1 followed by a gentamicin-PMMA spacer without microsilver at surgery 2 or vice versa. Implantation of the revision prosthesis was carried out at surgery 3.Objectives
Methods
Prosthetic joint infection (PJI) is the most common cause of arthroplasty failure. However, infection is often difficult to detect by conventional bacterial cultures, for which false-negative rates are 23% to 35%. In contrast, 16S rRNA metagenomics has been shown to quantitatively detect unculturable, unsuspected, and unviable pathogens. In this study, we investigated the use of 16S rRNA metagenomics for detection of bacterial pathogens in synovial fluid (SF) from patients with hip or knee PJI. We analyzed the bacterial composition of 22 SF samples collected from 11 patients with PJIs (first- and second-stage surgery). The V3 and V4 region of bacteria was assessed by comparing the taxonomic distribution of the 16S rDNA amplicons with microbiome sequencing analysis. We also compared the results of bacterial detection from different methods including 16S metagenomics, traditional cultures, and targeted Sanger sequencing.Objectives
Methods
Implant-related infection is one of the leading reasons for failure in orthopaedics and trauma, and results in high social and economic costs. Various antibacterial coating technologies have proven to be safe and effective both in preclinical and clinical studies, with post-surgical implant-related infections reduced by 90% in some cases, depending on the type of coating and experimental setup used. Economic assessment may enable the cost-to-benefit profile of any given antibacterial coating to be defined, based on the expected infection rate with and without the coating, the cost of the infection management, and the cost of the coating. After reviewing the latest evidence on the available antibacterial coatings, we quantified the impact caused by delaying their large-scale application. Considering only joint arthroplasties, our calculations indicated that for an antibacterial coating, with a final user’s cost price of €600 and able to reduce post-surgical infection by 80%, each year of delay to its large-scale application would cause an estimated 35 200 new cases of post-surgical infection in Europe, equating to additional hospital costs of approximately €440 million per year. An adequate reimbursement policy for antibacterial coatings may benefit patients, healthcare systems, and related research, as could faster and more affordable regulatory pathways for the technologies still in the pipeline. This could significantly reduce the social and economic burden of implant-related infections in orthopaedics and trauma.