Advertisement for orthosearch.org.uk
Results 1 - 20 of 234
Results per page:
Bone & Joint Research
Vol. 13, Issue 7 | Pages 332 - 341
5 Jul 2024
Wang T Yang C Li G Wang Y Ji B Chen Y Zhou H Cao L

Aims. Although low-intensity pulsed ultrasound (LIPUS) combined with disinfectants has been shown to effectively eliminate portions of biofilm in vitro, its efficacy in vivo remains uncertain. Our objective was to assess the antibiofilm potential and safety of LIPUS combined with 0.35% povidone-iodine (PI) in a rat debridement, antibiotics, and implant retention (DAIR) model of periprosthetic joint infection (PJI). Methods. A total of 56 male Sprague-Dawley rats were established in acute PJI models by intra-articular injection of bacteria. The rats were divided into four groups: a Control group, a 0.35% PI group, a LIPUS and saline group, and a LIPUS and 0.35% PI group. All rats underwent DAIR, except for Control, which underwent a sham procedure. General status, serum biochemical markers, weightbearing analysis, radiographs, micro-CT analysis, scanning electron microscopy of the prostheses, microbiological analysis, macroscope, and histopathology evaluation were performed 14 days after DAIR. Results. The group with LIPUS and 0.35% PI exhibited decreased levels of serum biochemical markers, improved weightbearing scores, reduced reactive bone changes, absence of viable bacteria, and decreased inflammation compared to the Control group. Despite the greater antibiofilm activity observed in the PI group compared to the LIPUS and saline group, none of the monotherapies were successful in preventing reactive bone changes or eliminating the infection. Conclusion. In the rat model of PJI treated with DAIR, LIPUS combined with 0.35% PI demonstrated stronger antibiofilm potential than monotherapy, without impairing any local soft-tissue. Cite this article: Bone Joint Res 2024;13(7):332–341


Bone & Joint Research
Vol. 7, Issue 5 | Pages 362 - 372
1 May 2018
Ueda Y Inui A Mifune Y Sakata R Muto T Harada Y Takase F Kataoka T Kokubu T Kuroda R

Objectives. The aim of this study was to investigate the effect of hyperglycaemia on oxidative stress markers and inflammatory and matrix gene expression within tendons of normal and diabetic rats and to give insights into the processes involved in tendinopathy. Methods. Using tenocytes from normal Sprague-Dawley rats, cultured both in control and high glucose conditions, reactive oxygen species (ROS) production, cell proliferation, messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, interleukin-6 (IL-6), matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-1 and -2 and type I and III collagens were determined after 48 and 72 hours in vitro. In an in vivo study, using diabetic rats and controls, NOX1 and 4 expressions in Achilles tendon were also determined. Results. In tenocyte cultures grown under high glucose conditions, gene expressions of NOX1, MMP-2, TIMP-1 and -2 after 48 and 72 hours, NOX4 after 48 hours and IL-6, type III collagen and TIMP-2 after 72 hours were significantly higher than those in control cultures grown under control glucose conditions. Type I collagen expression was significantly lower after 72 hours. ROS accumulation was significantly higher after 48 hours, and cell proliferation after 48 and 72 hours was significantly lower in high glucose than in control glucose conditions. In the diabetic rat model, NOX1 expression within the Achilles tendon was also significantly increased. Conclusion. This study suggests that high glucose conditions upregulate the expression of mRNA for NOX1 and IL-6 and the production of ROS. Moreover, high glucose conditions induce an abnormal tendon matrix expression pattern of type I collagen and a decrease in the proliferation of rat tenocytes. Cite this article: Y. Ueda, A. Inui, Y. Mifune, R. Sakata, T. Muto, Y. Harada, F. Takase, T. Kataoka, T. Kokubu, R. Kuroda. The effects of high glucose condition on rat tenocytes in vitro and rat Achilles tendon in vivo. Bone Joint Res 2018;7:362–372. DOI: 10.1302/2046-3758.75.BJR-2017-0126.R2


Bone & Joint Research
Vol. 10, Issue 7 | Pages 401 - 410
13 Jul 2021
Liu Z Wang H Wang S Gao J Niu L

Aims. Poly (ADP-ribose) polymerase (PARP) inhibitor has been reported to attenuate inflammatory response in rat models of inflammation. This study was designed to investigate the effect of PARP signalling in osteoarthritis (OA) cartilage inflammatory response in an OA rat model. Methods. The OA model was established by anterior cruciate ligament transection with medial meniscectomy in Wistar rats. The poly (ADP-ribose) polymerase 1 (PARP-1) shRNA (short hairpin (sh)-PARP-1) and negative control shRNA (sh-NC) were delivered using a lentiviral vector and were intra-articularly injected into rats after surgery. The weight-bearing distribution of the hind limbs and the knee joint width were measured every two weeks. The expression levels of PARP-1, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in cartilage were determined using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot. The serum concentrations of inflammatory cytokines were detected using enzyme-linked immunosorbent assay (ELISA). Results. PARP-1 expression level significantly increased in the cartilage of the established OA rat model. sh-PARP-1 treatment suppressed PARP-1 levels, decreased the Δ Force (the difference between the weight on ipsilateral limb and contralateral limb) and the knee joint width, inhibited cartilage matrix catabolic enzymes, and ameliorated OA cartilage degradation and attenuated inflammatory response. Conclusion. PARP-1 inhibition attenuates OA cartilage inflammatory response in the OA rat model. Cite this article: Bone Joint Res 2021;10(7):401–410


Bone & Joint Research
Vol. 12, Issue 11 | Pages 691 - 701
3 Nov 2023
Dai Z Chen Y He E Wang H Guo W Wu Z Huang K Zhao Q

Aims. Osteoporosis is characterized by decreased trabecular bone volume, and microarchitectural deterioration in the medullary cavity. Interleukin-19 (IL-19), a member of the IL-10 family, is an anti-inflammatory cytokine produced primarily by macrophages. The aim of our study was to investigate the effect of IL-19 on osteoporosis. Methods. Blood and femoral bone marrow suspension IL-19 levels were first measured in the lipopolysaccharide (LPS)-induced bone loss model. Small interfering RNA (siRNA) was applied to knock down IL-19 for further validation. Thereafter, osteoclast production was stimulated with IL-19 in combination with mouse macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The effect of IL-19 was subsequently evaluated using tartrate-resistant acid phosphatase (TRAP) staining and quantitative real-time polymerase chain reaction (RT-qPCR). The effect of IL-19 on osteoprotegerin (OPG) was then assessed using in vitro recombinant IL-19 treatment of primary osteoblasts and MLO-Y4 osteoblast cell line. Finally, transient transfection experiments and chromatin immunoprecipitation (ChIP) experiments were used to examine the exact mechanism of action. Results. In the LPS-induced bone loss mouse model, the levels of IL-19 in peripheral blood serum and femoral bone marrow suspension were significantly increased. The in vivo results indicated that global IL-19 deletion had no significant effect on RANKL content in the serum and bone marrow, but could increase the content of OPG in serum and femoral bone marrow, suggesting that IL-19 inhibits OPG expression in bone marrow mesenchymal stem cells (BMSCs) and thus increases bone resorption. Conclusion. IL-19 promotes bone resorption by suppressing OPG expression in BMSCs in a LPS-induced bone loss mouse model, which highlights the potential benefits and side effects of IL-19 for future clinical applications. Cite this article: Bone Joint Res 2023;12(11):691–701


Bone & Joint Research
Vol. 13, Issue 10 | Pages 546 - 558
4 Oct 2024
Li Y Wuermanbieke S Wang F Mu W Ji B Guo X Zou C Chen Y Zhang X Cao L

Aims. The optimum type of antibiotics and their administration route for treating Gram-negative (GN) periprosthetic joint infection (PJI) remain controversial. This study aimed to determine the GN bacterial species and antibacterial resistance rates related to clinical GN-PJI, and to determine the efficacy and safety of intra-articular (IA) antibiotic injection after one-stage revision in a GN pathogen-induced PJI rat model of total knee arthroplasty. Methods. A total of 36 consecutive PJI patients who had been infected with GN bacteria between February 2015 and December 2021 were retrospectively recruited in order to analyze the GN bacterial species involvement and antibacterial resistance rates. Antibiotic susceptibility assays of the GN bacterial species were performed to screen for the most sensitive antibiotic, which was then used to treat the most common GN pathogen-induced PJI rat model. The rats were randomized either to a PJI control group or to three meropenem groups (intraperitoneal (IP), IA, and IP + IA groups). After two weeks of treatment, infection control level, the side effects, and the volume of antibiotic use were evaluated. Results. Escherichia coli was the most common pathogen in GN-PJI, and meropenem was the most sensitive antibiotic. Serum inflammatory markers, weightbearing activity, and Rissing score were significantly improved by meropenem, especially in the IA and IP + IA groups ( p < 0.05). Meropenem in the IA group eradicated E. coli from soft-tissue, bone, and prosthetic surfaces, with the same effect as in the IP + IA group. Radiological results revealed that IA and IP + IA meropenem were effective at relieving bone damage. Haematoxylin and eosin staining also showed that IA and IP + IA meropenem improved synovial inflammation and bone destruction. No pathological changes in the main organs or abnormal serum markers were observed in any of the meropenem-treated rats. The IA group required the lowest amount of meropenem, followed by the IP and IP + IA groups. Conclusion. IA-only meropenem with a two-week treatment course was effective and safe for PJI control following one-stage revision in a rat model, with less meropenem use. Cite this article: Bone Joint Res 2024;13(10):546–558


Bone & Joint Research
Vol. 11, Issue 11 | Pages 803 - 813
1 Nov 2022
Guan X Gong X Jiao ZY Cao HY Liu S Lin C Huang X Lan H Ma L Xu B

Aims. The involvement of cyclin D1 in the proliferation of microglia, and the generation and maintenance of bone cancer pain (BCP), have not yet been clarified. We investigated the expression of microglia and cyclin D1, and the influences of cyclin D1 on pain threshold. Methods. Female Sprague Dawley (SD) rats were used to establish a rat model of BCP, and the messenger RNA (mRNA) and protein expression of ionized calcium binding adaptor molecule 1 (IBA1) and cyclin D1 were detected by reverse transcription-polymerase chain reaction (RT-PCR) and western blot, respectively. The proliferation of spinal microglia was detected by immunohistochemistry. The pain behaviour test was assessed by quantification of spontaneous flinches, limb use, and guarding during forced ambulation, mechanical paw withdrawal threshold, and thermal paw withdrawal latency. Results. IBA1 and cyclin D1 in the ipsilateral spinal horn increased in a time-dependent fashion. Spinal microglia proliferated in BCP rats. The microglia inhibitor minocycline attenuated the pain behaviour in BCP rats. The cyclin-dependent kinase inhibitor flavopiridol inhibited the proliferation of spinal microglia, and was associated with an improvement in pain behaviour in BCP rats. Conclusion. Our results revealed that the inhibition of spinal microglial proliferation was associated with a decrease in pain behaviour in a rat model of BCP. Cyclin D1 acts as a key regulator of the proliferation of spinal microglia in a rat model of BCP. Disruption of cyclin D1, the restriction-point control of cell cycle, inhibited the proliferation of microglia and attenuated the pain behaviours in BCP rats. Cyclin D1 and the proliferation of spinal microglia may be potential targets for the clinical treatment of BCP. Cite this article: Bone Joint Res 2022;11(11):803–813


Bone & Joint Research
Vol. 11, Issue 7 | Pages 503 - 512
25 Jul 2022
Wu Y Shao Y Xie D Pan J Chen H Yao J Liang J Ke H Cai D Zeng C

Aims. To verify whether secretory leucocyte protease inhibitor (SLPI) can promote early tendon-to-bone healing after anterior cruciate ligament (ACL) reconstruction. Methods. In vitro: the mobility of the rat bone mesenchymal stem cells (BMSCs) treated with SLPI was evaluated by scratch assay. Then the expression levels of osteogenic differentiation-related genes were analyzed by real-time quantitative PCR (qPCR) to determine the osteogenic effect of SLPI on BMSCs. In vivo: a rat model of ACL reconstruction was used to verify the effect of SLPI on tendon-to-bone healing. All the animals of the SLPI group and the negative control (NC) group were euthanized for histological evaluation, micro-CT scanning, and biomechanical testing. Results. SLPI improved the migration ability of BMSCs and upregulated the expression of genes related to osteogenic differentiation of BMSCs in vitro. In vivo, the SLPI group had higher histological scores at the tendon-bone interface by histological evaluation. Micro-CT showed more new bone formation and bone ingrowth around the grafted tendon in the SLPI group. Evaluation of the healing strength of the tendon-bone connection showed that the SLPI group had a higher maximum failure force and stiffness. Conclusion. SLPI can effectively promote early tendon-to-bone healing after ACL reconstruction via enhancing the migration and osteogenic differentiation of BMSCs. Cite this article: Bone Joint Res 2022;11(7):503–512


Bone & Joint Research
Vol. 13, Issue 7 | Pages 342 - 352
9 Jul 2024
Cheng J Jhan S Chen P Hsu S Wang C Moya D Wu Y Huang C Chou W Wu K

Aims. To explore the efficacy of extracorporeal shockwave therapy (ESWT) in the treatment of osteochondral defect (OCD), and its effects on the levels of transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, -3, -4, -5, and -7 in terms of cartilage and bone regeneration. Methods. The OCD lesion was created on the trochlear groove of left articular cartilage of femur per rat (40 rats in total). The experimental groups were Sham, OCD, and ESWT (0.25 mJ/mm. 2. , 800 impulses, 4 Hz). The animals were euthanized at 2, 4, 8, and 12 weeks post-treatment, and histopathological analysis, micro-CT scanning, and immunohistochemical staining were performed for the specimens. Results. In the histopathological analysis, the macro-morphological grading scale showed a significant increase, while the histological score and cartilage repair scale of ESWT exhibited a significant decrease compared to OCD at the 8- and 12-week timepoints. At the 12-week follow-up, ESWT exhibited a significant improvement in the volume of damaged bone compared to OCD. Furthermore, immunohistochemistry analysis revealed a significant decrease in type I collagen and a significant increase in type II collagen within the newly formed hyaline cartilage following ESWT, compared to OCD. Finally, SRY-box transcription factor 9 (SOX9), aggrecan, and TGF-β, BMP-2, -3, -4, -5, and -7 were significantly higher in ESWT than in OCD at 12 weeks. Conclusion. ESWT promoted the effect of TGF-β/BMPs, thereby modulating the production of extracellular matrix proteins and transcription factor involved in the regeneration of articular cartilage and subchondral bone in an OCD rat model. Cite this article: Bone Joint Res 2024;13(7):342–352


Aims. Treatment outcomes for methicillin-resistant Staphylococcus aureus (MRSA) periprosthetic joint infection (PJI) using systemic vancomycin and antibacterial cement spacers during two-stage revision arthroplasty remain unsatisfactory. This study explored the efficacy and safety of intra-articular vancomycin injections for PJI control after debridement and cement spacer implantation in a rat model. Methods. Total knee arthroplasty (TKA), MRSA inoculation, debridement, and vancomycin-spacer implantation were performed successively in rats to mimic first-stage PJI during the two-stage revision arthroplasty procedure. Vancomycin was administered intraperitoneally or intra-articularly for two weeks to control the infection after debridement and spacer implantation. Results. Rats receiving intra-articular vancomycin showed the best outcomes among the four treatment groups, with negative bacterial cultures, increased weight gain, increased capacity for weightbearing activities, increased residual bone volume preservation, and reduced inflammatory reactions in the joint tissues, indicating MRSA eradication in the knee. The vancomycin-spacer and/or systemic vancomycin failed to eliminate the MRSA infections following a two-week antibiotic course. Serum vancomycin levels did not reach nephrotoxic levels in any group. Mild renal histopathological changes, without changes in serum creatinine levels, were observed in the intraperitoneal vancomycin group compared with the intra-articular vancomycin group, but no changes in hepatic structure or serum alanine aminotransferase or aspartate aminotransferase levels were observed. No local complications were observed, such as sinus tract or non-healing surgical incisions. Conclusion. Intra-articular vancomycin injection was effective and safe for PJI control following debridement and spacer implantation in a rat model during two-stage revision arthroplasties, with better outcomes than systemic vancomycin administration. Cite this article: Bone Joint Res 2022;11(6):371–385


Bone & Joint Research
Vol. 1, Issue 2 | Pages 13 - 19
1 Feb 2012
Smith MD Baldassarri S Anez-Bustillos L Tseng A Entezari V Zurakowski D Snyder BD Nazarian A

Objectives. This study aims to assess the correlation of CT-based structural rigidity analysis with mechanically determined axial rigidity in normal and metabolically diseased rat bone. Methods. A total of 30 rats were divided equally into normal, ovariectomized, and partially nephrectomized groups. Cortical and trabecular bone segments from each animal underwent micro-CT to assess their average and minimum axial rigidities using structural rigidity analysis. Following imaging, all specimens were subjected to uniaxial compression and assessment of mechanically-derived axial rigidity. Results. The average structural rigidity-based axial rigidity was well correlated with the average mechanically-derived axial rigidity results (R. 2. = 0.74). This correlation improved significantly (p < 0.0001) when the CT-based Structural Rigidity Analysis (CTRA) minimum axial rigidity was correlated to the mechanically-derived minimum axial rigidity results (R. 2. = 0.84). Tests of slopes in the mixed model regression analysis indicated a significantly steeper slope for the average axial rigidity compared with the minimum axial rigidity (p = 0.028) and a significant difference in the intercepts (p = 0.022). The CTRA average and minimum axial rigidities were correlated with the mechanically-derived average and minimum axial rigidities using paired t-test analysis (p = 0.37 and p = 0.18, respectively). Conclusions. In summary, the results of this study suggest that structural rigidity analysis of micro-CT data can be used to accurately and quantitatively measure the axial rigidity of bones with metabolic pathologies in an experimental rat model. It appears that minimum axial rigidity is a better model for measuring bone rigidity than average axial rigidity


Bone & Joint Research
Vol. 9, Issue 2 | Pages 71 - 76
1 Feb 2020
Gao T Lin J Zhang C Zhu H Zheng X

Aims. The purpose of this study was to determine whether intracellular Staphylococcus aureus is associated with recurrent infection in a rat model of open fracture. Methods. After stabilizing with Kirschner wire, we created a midshaft femur fracture in Sprague-Dawley rats and infected the wound with green fluorescent protein (GFP)-tagged S. aureus. After repeated debridement and negative swab culture was achieved, the isolation of GFP-containing cells from skin, bone marrow, and muscle was then performed. The composition and viability of intracellular S. aureus in isolated GFP-positive cells was assessed. We suppressed the host immune system and observed whether recurrent infection would occur. Finally, rats were assigned to one of six treatment groups (a combination of antibiotic treatment and implant removal/retention). The proportion of successful eradication was determined. Results. Green fluorescent protein-containing cells were successfully isolated after the swab culture was negative from skin (n = 0, 0%), muscle (n = 10, 100%), and bone marrow (n = 10, 100%) of a total of ten rats. The phagocytes were predominant in GFP-positive cells from muscle (73%) and bone marrow (81%) with a significantly higher viability of intracellular S. aureus (all p-values < 0.001). The recurrent infection occurred in up to 75% of rats after the immunosuppression. The proportion of successful eradication was not associated with implant retention or removal, and the efficacy of linezolid in eradicating intracellular S. aureus is significantly higher than that of vancomycin. Conclusion. Intracellular S. aureus is associated with recurrent infection in the rat model of open fracture. Usage of linezolid, a membrane-permeable antibiotic, is an effective strategy against intracellular S. aureus. Cite this article:Bone Joint Res. 2020;9(2):71–76


Bone & Joint Research
Vol. 2, Issue 8 | Pages 149 - 154
1 Aug 2013
Aurégan J Coyle RM Danoff JR Burky RE Akelina Y Rosenwasser MP

Objectives. One commonly used rat fracture model for bone and mineral research is a closed mid-shaft femur fracture as described by Bonnarens in 1984. Initially, this model was believed to create very reproducible fractures. However, there have been frequent reports of comminution and varying rates of complication. Given the importance of precise anticipation of those characteristics in laboratory research, we aimed to precisely estimate the rate of comminution, its importance and its effect on the amount of soft callus created. Furthermore, we aimed to precisely report the rate of complications such as death and infection. Methods. We tested a rat model of femoral fracture on 84 rats based on Bonnarens’ original description. We used a proximal approach with trochanterotomy to insert the pin, a drop tower to create the fracture and a high-resolution fluoroscopic imager to detect the comminution. We weighed the soft callus on day seven and compared the soft callus parameters with the comminution status. Results. The mean operating time was 34.8 minutes (. sd. 9.8). The fracture was usable (transverse, mid-shaft, without significant comminution and with displacement < 1 mm) in 74 animals (88%). Of these 74 usable fractures, slight comminution was detected in 47 (63%). In 50 animals who underwent callus manipulation, slight comminution (n = 32) was statistically correlated to the amount of early callus created (r = 0.35, p = 0.015). Two complications occurred: one death and one deep infection. Conclusions. We propose an accurate description of comminution and complications in order to improve experiments on rat femur fracture model in the field of laboratory research. Cite this article: Bone Joint Res 2013;2:149–54


Bone & Joint Research
Vol. 6, Issue 4 | Pages 231 - 244
1 Apr 2017
Zhang J Yuan T Zheng N Zhou Y Hogan MV Wang JH

Objectives. After an injury, the biological reattachment of tendon to bone is a challenge because healing takes place between a soft (tendon) and a hard (bone) tissue. Even after healing, the transition zone in the enthesis is not completely regenerated, making it susceptible to re-injury. In this study, we aimed to regenerate Achilles tendon entheses (ATEs) in wounded rats using a combination of kartogenin (KGN) and platelet-rich plasma (PRP). Methods. Wounds created in rat ATEs were given three different treatments: kartogenin platelet-rich plasma (KGN-PRP); PRP; or saline (control), followed by histological and immunochemical analyses, and mechanical testing of the rat ATEs after three months of healing. Results. Histological analysis showed well organised arrangement of collagen fibres and proteoglycan formation in the wounded ATEs in the KGN-PRP group. Furthermore, immunohistochemical analysis revealed fibrocartilage formation in the KGN-PRP-treated ATEs, evidenced by the presence of both collagen I and II in the healed ATE. Larger positively stained collagen III areas were found in both PRP and saline groups than those in the KGN-PRP group. Chondrocyte-related genes, SOX9 and collagen II, and tenocyte-related genes, collagen I and scleraxis (SCX), were also upregulated by KGN-PRP. Moreover, mechanical testing results showed higher ultimate tensile strength in the KGN-PRP group than in the saline control group. In contrast, PRP treatment appeared to have healed the injured ATE but induced no apparent formation of fibrocartilage. The saline-treated group showed poor healing without fibrocartilage tissue formation in the ATEs. Conclusions. Our results show that injection of KGN-PRP induces fibrocartilage formation in the wounded rat ATEs. Hence, KGN-PRP may be a clinically relevant, biological approach to regenerate injured enthesis effectively. Cite this article: J. Zhang, T. Yuan, N. Zheng, Y. Zhou, M. V. Hogan, J. H-C. Wang. The combined use of kartogenin and platelet-rich plasma promotes fibrocartilage formation in the wounded rat Achilles tendon entheses. Bone Joint Res 2017;6:231–244. DOI: 10.1302/2046-3758.64.BJR-2017-0268.R1


Objectives. MicroRNAs (miRNAs) have been reported as key regulators of bone formation, signalling, and repair. Fracture healing is a proliferative physiological process where the body facilitates the repair of a bone fracture. The aim of our study was to explore the effects of microRNA-186 (miR-186) on fracture healing through the bone morphogenetic protein (BMP) signalling pathway by binding to Smad family member 6 (SMAD6) in a mouse model of femoral fracture. Methods. Microarray analysis was adopted to identify the regulatory miR of SMAD6. 3D micro-CT was performed to assess the bone volume (BV), bone volume fraction (BVF, BV/TV), and bone mineral density (BMD), followed by a biomechanical test for maximum load, maximum radial degrees, elastic radial degrees, and rigidity of the femur. The positive expression of SMAD6 in fracture tissues was measured. Moreover, the miR-186 level, messenger RNA (mRNA) level, and protein levels of SMAD6, BMP-2, and BMP-7 were examined. Results. MicroRNA-186 was predicted to regulate SMAD6. Furthermore, SMAD6 was verified as a target gene of miR-186. Overexpressed miR-186 and SMAD6 silencing resulted in increased callus formation, BMD and BV/TV, as well as maximum load, maximum radial degrees, elastic radial degrees, and rigidity of the femur. In addition, the mRNA and protein levels of SMAD6 were decreased, while BMP-2 and BMP-7 levels were elevated in response to upregulated miR-186 and SMAD6 silencing. Conclusion. In conclusion, the study indicated that miR-186 could activate the BMP signalling pathway to promote fracture healing by inhibiting SMAD6 in a mouse model of femoral fracture. Cite this article: Bone Joint Res 2019;8:550–562


Bone & Joint Research
Vol. 1, Issue 11 | Pages 289 - 296
1 Nov 2012
Savaridas T Wallace RJ Muir AY Salter DM Simpson AHRW

Objectives. Small animal models of fracture repair primarily investigate indirect fracture healing via external callus formation. We present the first described rat model of direct fracture healing. Methods. A rat tibial osteotomy was created and fixed with compression plating similar to that used in patients. The procedure was evaluated in 15 cadaver rats and then in vivo in ten Sprague-Dawley rats. Controls had osteotomies stabilised with a uniaxial external fixator that used the same surgical approach and relied on the same number and diameter of screw holes in bone. Results. Fracture healing occurred without evidence of external callus on plain radiographs. At six weeks after fracture fixation, the mean stress at failure in a four-point bending test was 24.65 N/mm. 2. (. sd. 6.15). Histology revealed ‘cutting-cones’ traversing the fracture site. In controls where a uniaxial external fixator was used, bone healing occurred via external callus formation. Conclusions. A simple, reproducible model of direct fracture healing in rat tibia that mimics clinical practice has been developed for use in future studies of direct fracture healing


Bone & Joint Research
Vol. 8, Issue 10 | Pages 472 - 480
1 Oct 2019
Hjorthaug GA Søreide E Nordsletten L Madsen JE Reinholt FP Niratisairak S Dimmen S

Objectives. Experimental studies indicate that non-steroidal anti-inflammatory drugs (NSAIDs) may have negative effects on fracture healing. This study aimed to assess the effect of immediate and delayed short-term administration of clinically relevant parecoxib doses and timing on fracture healing using an established animal fracture model. Methods. A standardized closed tibia shaft fracture was induced and stabilized by reamed intramedullary nailing in 66 Wistar rats. A ‘parecoxib immediate’ (Pi) group received parecoxib (3.2 mg/kg bodyweight twice per day) on days 0, 1, and 2. A ‘parecoxib delayed’ (Pd) group received the same dose of parecoxib on days 3, 4, and 5. A control group received saline only. Fracture healing was evaluated by biomechanical tests, histomorphometry, and dual-energy x-ray absorptiometry (DXA) at four weeks. Results. For ultimate bending moment, the median ratio between fractured and non-fractured tibia was 0.61 (interquartile range (IQR) 0.45 to 0.82) in the Pi group, 0.44 (IQR 0.42 to 0.52) in the Pd group, and 0.50 (IQR 0.41 to 0.75) in the control group (n = 44; p = 0.068). There were no differences between the groups for stiffness, energy, deflection, callus diameter, DXA measurements (n = 64), histomorphometrically osteoid/bone ratio, or callus area (n = 20). Conclusion. This study demonstrates no negative effect of immediate or delayed short-term administration of parecoxib on diaphyseal fracture healing in rats. Cite this article: G. A. Hjorthaug, E. Søreide, L. Nordsletten, J. E. Madsen, F. P. Reinholt, S. Niratisairak, S. Dimmen. Short-term perioperative parecoxib is not detrimental to shaft fracture healing in a rat model. Bone Joint Res 2019;8:472–480. DOI: 10.1302/2046-3758.810.BJR-2018-0341.R1


Aims. In wound irrigation, 1 mM ethylenediaminetetraacetic acid (EDTA) is more efficacious than normal saline (NS) in removing bacteria from a contaminated wound. However, the optimal EDTA concentration remains unknown for different animal wound models. Methods. The cell toxicity of different concentrations of EDTA dissolved in NS (EDTA-NS) was assessed by Cell Counting Kit-8 (CCK-8). Various concentrations of EDTA-NS irrigation solution were compared in three female Sprague-Dawley rat models: 1) a skin defect; 2) a bone exposed; and 3) a wound with an intra-articular implant. All three models were contaminated with Staphylococcus aureus or Escherichia coli. EDTA was dissolved at a concentration of 0 (as control), 0.1, 0.5, 1, 2, 5, 10, 50, and 100 mM in sterile NS. Samples were collected from the wounds and cultured. The bacterial culture-positive rate (colony formation) and infection rate (pus formation) of each treatment group were compared after irrigation and debridement. Results. Cell viability intervened below 10 mM concentrations of EDTA-NS showed no cytotoxicity. Concentrations of 1, 2, and 5 mM EDTA-NS had lower rates of infection and positive cultures for S. aureus and E. coli compared with other concentrations in the skin defect model. For the bone exposed model, 0.5, 1, and 2 mM EDTA-NS had lower rates of infection and positive cultures. For intra-articular implant models 10 and 50 mM, EDTA-NS had the lowest rates of infection and positive cultures. Conclusion. The concentrations of EDTA-NS below 10 mM are safe for irrigation. The optimal concentration of EDTA-NS varies by type of wound after experimental inoculation of three types of wound. Cite this article: Bone Joint Res 2021;10(1):68–76


Bone & Joint Research
Vol. 7, Issue 3 | Pages 244 - 251
1 Mar 2018
Tawonsawatruk T Sriwatananukulkit O Himakhun W Hemstapat W

Objectives. In this study, we compared the pain behaviour and osteoarthritis (OA) progression between anterior cruciate ligament transection (ACLT) and osteochondral injury in surgically-induced OA rat models. Methods. OA was induced in the knee joints of male Wistar rats using transection of the ACL or induction of osteochondral injury. Changes in the percentage of high limb weight distribution (%HLWD) on the operated hind limb were used to determine the pain behaviour in these models. The development of OA was assessed and compared using a histological evaluation based on the Osteoarthritis Research Society International (OARSI) cartilage OA histopathology score. Results. Both models showed an increase in joint pain as indicated by a significant (p < 0.05) decrease in the values of %HLWD at one week post-surgery. In the osteochondral injury model, the %HLWD returned to normal within three weeks, while in the ACLT model, a significant decrease in the %HLWD was persistent over an eight-week period. In addition, OA progression was more advanced in the ACLT model than in the osteochondral injury model. Furthermore, the ACLT model exhibited a higher mean OA score than that of the osteochondral injury model at 12 weeks. Conclusion. The development of pain patterns in the ACLT and osteochondral injury models is different in that the OA progression was significant in the ACLT model. Although both can be used as models for a post-traumatic injury of the knee, the selection of appropriate models for OA in preclinical studies should be specified and relevant to the clinical scenario. Cite this article: T. Tawonsawatruk, O. Sriwatananukulkit, W. Himakhun, W. Hemstapat. Comparison of pain behaviour and osteoarthritis progression between anterior cruciate ligament transection and osteochondral injury in rat models. Bone Joint Res 2018;7:244–251. DOI: 10.1302/2046-3758.73.BJR-2017-0121.R2


Bone & Joint Research
Vol. 6, Issue 2 | Pages 90 - 97
1 Feb 2017
Rajfer RA Kilic A Neviaser AS Schulte LM Hlaing SM Landeros J Ferrini MG Ebramzadeh E Park S

Objectives. We investigated the effects on fracture healing of two up-regulators of inducible nitric oxide synthase (iNOS) in a rat model of an open femoral osteotomy: tadalafil, a phosphodiesterase inhibitor, and the recently reported nutraceutical, COMB-4 (consisting of L-citrulline, Paullinia cupana, ginger and muira puama), given orally for either 14 or 42 days. Materials and Methods. Unilateral femoral osteotomies were created in 58 male rats and fixed with an intramedullary compression nail. Rats were treated daily either with vehicle, tadalafil or COMB-4. Biomechanical testing of the healed fracture was performed on day 42. The volume, mineral content and bone density of the callus were measured by quantitative CT on days 14 and 42. Expression of iNOS was measured by immunohistochemistry. Results. When compared with the control group, the COMB-4 group exhibited 46% higher maximum strength (t-test, p = 0.029) and 92% higher stiffness (t-test, p = 0.023), but no significant changes were observed in the tadalafil group. At days 14 and 42, there was no significant difference between the three groups with respect to callus volume, mineral content and bone density. Expression of iNOS at day 14 was significantly higher in the COMB-4 group which, as expected, had returned to baseline levels at day 42. Conclusion. This study demonstrates an enhancement in fracture healing by an oral natural product known to augment iNOS expression. Cite this article: R. A. Rajfer, A. Kilic, A. S. Neviaser, L. M. Schulte, S. M. Hlaing, J. Landeros, M. G. Ferrini, E. Ebramzadeh, S-H. Park. Enhancement of fracture healing in the rat, modulated by compounds that stimulate inducible nitric oxide synthase: Acceleration of fracture healing via inducible nitric oxide synthase. Bone Joint Res 2017:6:–97. DOI: 10.1302/2046-3758.62.BJR-2016-0164.R2


Aims. Methicillin-resistant Staphylococcus aureus (MRSA) can cause wound infections via a ‘Trojan Horse’ mechanism, in which neutrophils engulf intestinal MRSA and travel to the wound, releasing MRSA after apoptosis. The possible role of intestinal MRSA in prosthetic joint infection (PJI) is unknown. Methods. Rats underwent intestinal colonization with green fluorescent protein (GFP)-tagged MRSA by gavage and an intra-articular wire was then surgically implanted. After ten days, the presence of PJI was determined by bacterial cultures of the distal femur, joint capsule, and implant. We excluded several other possibilities for PJI development. Intraoperative contamination was excluded by culturing the specimen obtained from surgical site. Extracellular bacteraemia-associated PJI was excluded by comparing with the infection rate after intravenous injection of MRSA or MRSA-carrying neutrophils. To further support this theory, we tested the efficacy of prophylactic membrane-permeable and non-membrane-permeable antibiotics in this model. Results. After undergoing knee surgery eight or 72 hours after colonization, five out of 20 rats (25.0%) and two out of 20 rats (10.0%) developed PJI, respectively. Strikingly, 11 out of 20 rats (55.0%) developed PJI after intravenous injection of MRSA-carrying neutrophils that were isolated from rats with intestinal MRSA colonization. None of the rats receiving intravenous injections of MRSA developed PJI. These results suggest that intestinal MRSA carried by neutrophils could cause PJI in our rat model. Ten out of 20 (50.0%) rats treated with non-membrane-permeable gentamicin developed PJI, whereas only one out of 20 (5.0%) rats treated with membrane-permeable linezolid developed PJI. Conclusion. Neutrophils as carriers of intestinal MRSA may play an important role in PJI development. Cite this article:Bone Joint Res. 2020;9(4):152–161