Aims. Posterior malleolar (PM) fractures are commonly associated with ankle fractures, pilon fractures, and to a lesser extent tibial shaft fractures. The tibialis posterior (TP) tendon entrapment is a rare complication associated with PM fractures. If undiagnosed, TP entrapment is associated with complications, ranging from reduced range of ankle
Aims. Scapular notching is thought to have an adverse effect on the outcome of reverse total shoulder arthroplasty (RTSA). However, the matter is still controversial. The aim of this study was to determine the clinical impact of scapular notching on outcomes after RTSA. Methods. Three electronic databases (PubMed, Cochrane Database, and EMBASE) were searched for studies which evaluated the influence of scapular notching on clinical outcome after RTSA. The quality of each study was assessed. Functional outcome scores (the Constant-Murley scores (CMS), and the American Shoulder and Elbow Surgeons (ASES) scores), and postoperative range of
Aims. The aim of this meta-analysis was to compare the outcome of total elbow arthroplasty (TEA) undertaken for rheumatoid arthritis (RA) with TEA performed for post-traumatic conditions with regard to implant failure, functional outcome, and perioperative complications. Materials and Methods. We completed a comprehensive literature search on PubMed, Web of Science, Embase, and the Cochrane Library and conducted a systematic review and meta-analysis. Nine cohort studies investigated the outcome of TEA between RA and post-traumatic conditions. The preferred reporting items for systematic reviews and meta-analysis (Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)) guidelines and Newcastle-Ottawa scale were applied to assess the quality of the included studies. We assessed three major outcome domains: implant failures (including aseptic loosening, septic loosening, bushing wear, axle failure, component disassembly, or component fracture); functional outcomes (including arc of range of
Objectives. This review aims to summarize the outcomes used to describe effectiveness of treatments for paediatric wrist fractures within existing literature. Method. We searched the Cochrane Library, Scopus, and Ovid Medline for studies pertaining to paediatric wrist fractures. Three authors independently identified and reviewed eligible studies. This resulted in a list of outcome domains and outcomes measures used within clinical research. Outcomes were mapped onto domains defined by the COMET collaborative. Results. Our search terms identified 4,262 different papers. Screening of titles excluded 2,975, leaving 1,287 papers to be assessed for eligibility. Of this 1,287, 30 studies were included for full analysis. Overall, five outcome domains, 16 outcome measures, and 28 measurement instruments were identified as outcomes within these studies. 24 studies used at least one measurement pertaining to the physiological/clinical outcome domain. The technical, life impact, and adverse effect domains were recorded in 23, 20, and 11 of the studies respectively. Within each domain it was common for different measurement instruments to be used to assess each outcome measure. The most commonly reported outcome measures were range of
Osteoarthritis (OA) is mainly caused by ageing, strain, trauma, and congenital joint abnormalities, resulting in articular cartilage degeneration. During the pathogenesis of OA, the changes in subchondral bone (SB) are not only secondary manifestations of OA, but also an active part of the disease, and are closely associated with the severity of OA. In different stages of OA, there were microstructural changes in SB. Osteocytes, osteoblasts, and osteoclasts in SB are important in the pathogenesis of OA. The signal transduction mechanism in SB is necessary to maintain the balance of a stable phenotype, extracellular matrix (ECM) synthesis, and bone remodelling between articular cartilage and SB. An imbalance in signal transduction can lead to reduced cartilage quality and SB thickening, which leads to the progression of OA. By understanding changes in SB in OA, researchers are exploring drugs that can regulate these changes, which will help to provide new ideas for the treatment of OA. Cite this article:
Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make predictions, offers a pathway towards more personalized and tailored surgical treatments. This approach is particularly relevant to prevalent joint diseases such as osteoarthritis (OA). In contrast to end-stage disease, where joint arthroplasty provides excellent results, early stages of OA currently lack effective therapies to halt or reverse progression. Accurate prediction of OA progression is crucial if timely interventions are to be developed, to enhance patient care and optimize the design of clinical trials. A systematic review was conducted in accordance with PRISMA guidelines. We searched MEDLINE and Embase on 5 May 2024 for studies utilizing ML to predict OA progression. Titles and abstracts were independently screened, followed by full-text reviews for studies that met the eligibility criteria. Key information was extracted and synthesized for analysis, including types of data (such as clinical, radiological, or biochemical), definitions of OA progression, ML algorithms, validation methods, and outcome measures.Aims
Methods
Spinopelvic characteristics influence the hip’s biomechanical behaviour. However, to date there is little knowledge defining what ‘normal’ spinopelvic characteristics are. This study aims to determine how static spinopelvic characteristics change with age and ethnicity among asymptomatic, healthy individuals. This systematic review followed the Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines to identify English studies, including ≥ 18-year-old participants, without evidence of hip or spine pathology or a history of previous surgery or interventional treatment, documenting lumbar lordosis (LL), sacral slope (SS), pelvic tilt (PT), and pelvic incidence (PI). From a total of 2,543 articles retrieved after the initial database search, 61 articles were eventually selected for data extraction.Aims
Methods
To analyze outcomes reported in studies of Ponseti correction of idiopathic clubfoot. A systematic review of the literature was performed to identify a list of outcomes and outcome tools reported in the literature. A total of 865 studies were screened following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and 124 trials were included in the analysis. Data extraction was completed by two researchers for each trial. Each outcome tool was assigned to one of the five core areas defined by the Outcome Measures Recommended for use in Randomized Clinical Trials (OMERACT). Bias assessment was not deemed necessary for the purpose of this paper.Aims
Methods
The aims of this study were to validate the outcome of total elbow arthroplasty (TEA) in patients with rheumatoid arthritis (RA), and to identify factors that affect the outcome. We searched PubMed, MEDLINE, Cochrane Reviews, and Embase from between January 2003 and March 2019. The primary aim was to determine the implant failure rate, the mode of failure, and risk factors predisposing to failure. A secondary aim was to identify the overall complication rate, associated risk factors, and clinical performance. A meta-regression analysis was completed to identify the association between each parameter with the outcome.Aims
Methods
Bone is one of the most highly adaptive tissues in the body, possessing the capability to alter its morphology and function in response to stimuli in its surrounding environment. The ability of bone to sense and convert external mechanical stimuli into a biochemical response, which ultimately alters the phenotype and function of the cell, is described as mechanotransduction. This review aims to describe the fundamental physiology and biomechanisms that occur to induce osteogenic adaptation of a cell following application of a physical stimulus. Considerable developments have been made in recent years in our understanding of how cells orchestrate this complex interplay of processes, and have become the focus of research in osteogenesis. We will discuss current areas of preclinical and clinical research exploring the harnessing of mechanotransductive properties of cells and applying them therapeutically, both in the context of fracture healing and de novo bone formation in situations such as nonunion. Cite this article:
This systematic review examines the current literature regarding surgical techniques for restoring articular cartilage in the hip, from the older microfracture techniques involving perforation to the subchondral bone, to adaptations of this technique using nanofractures and scaffolds. This review discusses the autologous and allograft transfer systems and the autologous matrix-induced chondrogenesis (AMIC) technique, as well as a summary of the previously discussed techniques, which could become common practice for restoring articular cartilage, thus reducing the need for total hip arthroplasty. Using the
Despite its intrinsic ability to regenerate form and function after injury, bone tissue can be challenged by a multitude of pathological conditions. While innovative approaches have helped to unravel the cascades of bone healing, this knowledge has so far not improved the clinical outcomes of bone defect treatment. Recent findings have allowed us to gain in-depth knowledge about the physiological conditions and biological principles of bone regeneration. Now it is time to transfer the lessons learned from bone healing to the challenging scenarios in defects and employ innovative technologies to enable biomaterial-based strategies for bone defect healing. This review aims to provide an overview on endogenous cascades of bone material formation and how these are transferred to new perspectives in biomaterial-driven approaches in bone regeneration. Cite this article: T. Winkler, F. A. Sass, G. N. Duda, K. Schmidt-Bleek. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge.