The Chopart joint complex is a joint between the midfoot and hindfoot. The static and dynamic support system of the joint is critical for maintaining the medial longitudinal arch of the foot. Any dysfunction leads to progressive collapsing flatfoot deformity (PCFD). Often, the tibialis posterior is the primary cause; however, contrary views have also been expressed. The present investigation intends to explore the comprehensive anatomy of the support system of the Chopart joint complex to gain insight into the cause of PCFD. The study was conducted on 40 adult embalmed cadaveric lower limbs. Chopart joint complexes were dissected, and the structures supporting the joint inferiorly were observed and noted.Aims
Methods
Objective. The objective of this study was to evaluate the rotation and
translation of each joint in the hindfoot and compare the load response
in healthy feet with that in stage II posterior tibial tendon dysfunction
(PTTD) flatfoot by analysing the reconstructive three-dimensional
(3D) computed tomography (CT) image data during simulated weight-bearing. . Methods. CT scans of 15 healthy feet and 15 feet with stage II PTTD flatfoot
were taken first in a non-weight-bearing condition, followed by
a simulated full-body weight-bearing condition. The images of the
hindfoot bones were reconstructed into 3D models. The ‘twice registration’
method in three planes was used to calculate the position of the
talus relative to the calcaneus in the talocalcaneal joint, the
navicular relative to the talus in talonavicular joint, and the cuboid
relative to the calcaneus in the calcaneocuboid joint. Results. From non- to full-body-weight-bearing condition, the difference
in the talus position relative to the calcaneus in the talocalcaneal
joint was 0.6° more dorsiflexed (p = 0.032), 1.4° more everted (p
= 0.026), 0.9 mm more anterior (p = 0.031) and 1.0 mm more proximal
(p = 0.004) in stage II PTTD flatfoot compared with that in a healthy
foot. The navicular position difference relative to the talus in
the talonavicular joint was 3° more everted (p = 0.012), 1.3 mm more
lateral (p = 0.024), 0.8 mm more anterior (p = 0.037) and 2.1 mm
more proximal (p = 0.017). The cuboid position difference relative
to the calcaneus in the calcaneocuboid joint did not change significantly
in rotation and translation (all p ≥ 0.08). . Conclusion. Referring to a previous study regarding both the cadaveric foot
and the live foot, joint instability occurred in the hindfoot in
simulated weight-bearing condition in patients with stage II PTTD
flatfoot. The method used in this study might be applied to clinical
analysis of the aetiology and
The surgical challenge with severe hindfoot injuries is one of technical feasibility, and whether the limb can be salvaged. There is an additional question of whether these injuries should be managed with limb salvage, or whether patients would achieve a greater quality of life with a transtibial amputation. This study aims to measure functional outcomes in military patients sustaining hindfoot fractures, and identify injury features associated with poor function. Follow-up was attempted in all United Kingdom military casualties sustaining hindfoot fractures. All respondents underwent short-form (SF)-12 scoring; those retaining their limb also completed the American Academy of Orthopaedic Surgeons Foot and Ankle (AAOS F&A) outcomes questionnaire. A multivariate regression analysis identified injury features associated with poor functional recovery.Objectives
Methods