There is a lack of biomaterial-based carriers for the local delivery of rifampicin (RIF), one of the cornerstone second defence antibiotics for bone infections. RIF is also known for causing rapid development of antibiotic resistance when given as monotherapy. This in vitro study evaluated a clinically used biphasic calcium sulphate/hydroxyapatite (CaS/HA) biomaterial as a carrier for dual delivery of RIF with vancomycin (VAN) or gentamicin (GEN). The CaS/HA composites containing RIF/GEN/VAN, either alone or in combination, were first prepared and their injectability, setting time, and antibiotic elution profiles were assessed. Using a continuous disk diffusion assay, the antibacterial behaviour of the material was tested on both planktonic and biofilm-embedded forms of standard and clinical strains of Aims
Methods
Aims. Dead-space management, following dead bone resection, is an important element of successful chronic osteomyelitis treatment. This study compared two different biodegradable antibiotic carriers used for dead-space management, and reviewed clinical and radiological outcomes. All cases underwent single-stage surgery and had a minimum one-year follow-up. Methods. A total of 179 patients received preformed calcium sulphate pellets containing 4% tobramycin (Group OT), and 180 patients had an injectable calcium sulphate/nanocrystalline hydroxyapatite
The efficacy of saline irrigation for treatment of implant-associated infections is limited in the presence of porous metallic implants. This study evaluated the therapeutic efficacy of antibiotic doped bioceramic (vancomycin/tobramycin-doped polyvinyl alcohol composite (PVA-VAN/TOB-P)) after saline wash in a mouse infection model implanted with titanium cylinders. Air pouches created in female BalBc mice by subcutaneous injection of air. In the first of two independent studies, pouches were implanted with titanium cylinders (400, 700, and 100 µm pore sizes) and inoculated with Aims
Methods
Taper corrosion has been widely reported to be problematic for modular total hip arthroplasty implants. A simple and systematic method to evaluate taper damage with sufficient resolution is needed. We introduce a semiquantitative grading system for modular femoral tapers to characterize taper corrosion damage. After examining a unique collection of retrieved cobalt-chromium (CoCr) taper sleeves (n = 465) using the widely-used Goldberg system, we developed an expanded six-point visual grading system intended to characterize the severity, visible material loss, and absence of direct component contact due to corrosion. Female taper sleeve damage was evaluated by three blinded observers using the Goldberg scoring system and the expanded system. A subset (n = 85) was then re-evaluated following destructive cleaning, using both scoring systems. Material loss for this subset was quantified using metrology and correlated with both scoring systems.Aims
Methods
Elevated levels of circulating cobalt ions have been linked with a wide range of systemic complications including neurological, endocrine, and cardiovascular symptoms. Case reports of patients with elevated blood cobalt ions have described significant cardiovascular complications including cardiomyopathy. However, correlation between the actual level of circulating cobalt and extent of cardiovascular injury has not previously been performed. This review examines evidence from the literature for a link between elevated blood cobalt levels secondary to metal-on-metal (MoM) hip arthroplasties and cardiomyopathy. Correlation between low, moderate, and high blood cobalt with cardiovascular complications has been considered. Elevated blood cobalt at levels over 250 µg/l have been shown to be a risk factor for developing systemic complications and published case reports document cardiomyopathy, cardiac transplantation, and death in patients with severely elevated blood cobalt ions. However, it is not clear that there is a hard cut-off value and cardiac dysfunction may occur at lower levels. Clinical and laboratory research has found conflicting evidence of cobalt-induced cardiomyopathy in patients with MoM hips. Further work needs to be done to clarify the link between severely elevated blood cobalt ions and cardiomyopathy. Cite this article:
Bioresorbable orthopaedic devices with calcium phosphate (CaP) fillers are commercially available on the assumption that increased calcium (Ca) locally drives new bone formation, but the clinical benefits are unknown. Electron beam (EB) irradiation of polymer devices has been shown to enhance the release of Ca. The aims of this study were to: 1) establish the biological safety of EB surface-modified bioresorbable devices; 2) test the release kinetics of CaP from a polymer device; and 3) establish any subsequent beneficial effects on bone repair ActivaScrew Interference (Bioretec Ltd, Tampere, Finland) and poly(L-lactide-co-glycolide) (PLGA) orthopaedic screws containing 10 wt% β-tricalcium phosphate (β-TCP) underwent EB treatment. Objectives
Methods
Calcium sulphate has traditionally been used as a filler of dead space arising during surgery. Various complications have been described following the use of Stimulan bio-absorbable calcium sulphate beads. This study is a prospective observational study to assess the safety profile of these beads when used in revision arthroplasty, comparing the complication rates with those reported in the literature. A total of 755 patients who underwent 456 revision total knee arthroplasties (TKA) and 299 revision total hip arthroplasties (THA), with a mean follow-up of 35 months (0 to 78) were included in the study.Aims
Methods