Advertisement for orthosearch.org.uk
Results 1 - 47 of 47
Results per page:
Bone & Joint Research
Vol. 13, Issue 9 | Pages 485 - 496
13 Sep 2024
Postolka B Taylor WR Fucentese SF List R Schütz P

Aims. This study aimed to analyze kinematics and kinetics of the tibiofemoral joint in healthy subjects with valgus, neutral, and varus limb alignment throughout multiple gait activities using dynamic videofluoroscopy. Methods. Five subjects with valgus, 12 with neutral, and ten with varus limb alignment were assessed during multiple complete cycles of level walking, downhill walking, and stair descent using a combination of dynamic videofluoroscopy, ground reaction force plates, and optical motion capture. Following 2D/3D registration, tibiofemoral kinematics and kinetics were compared between the three limb alignment groups. Results. No significant differences for the rotational or translational patterns between the different limb alignment groups were found for level walking, downhill walking, or stair descent. Neutral and varus aligned subjects showed a mean centre of rotation located on the medial condyle for the loaded stance phase of all three gait activities. Valgus alignment, however, resulted in a centrally located centre of rotation for level and downhill walking, but a more medial centre of rotation during stair descent. Knee adduction/abduction moments were significantly influenced by limb alignment, with an increasing knee adduction moment from valgus through neutral to varus. Conclusion. Limb alignment was not reflected in the condylar kinematics, but did significantly affect the knee adduction moment. Variations in frontal plane limb alignment seem not to be a main modulator of condylar kinematics. The presented data provide insights into the influence of anatomical parameters on tibiofemoral kinematics and kinetics towards enhancing clinical decision-making and surgical restoration of natural knee joint motion and loading. Cite this article: Bone Joint Res 2024;13(9):485–496


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1059 - 1066
1 Oct 2024
Konishi T Hamai S Tsushima H Kawahara S Akasaki Y Yamate S Ayukawa S Nakashima Y

Aims. The Coronal Plane Alignment of the Knee (CPAK) classification has been developed to predict individual variations in inherent knee alignment. The impact of preoperative and postoperative CPAK classification phenotype on the postoperative clinical outcomes of total knee arthroplasty (TKA) remains elusive. This study aimed to examine the effect of postoperative CPAK classification phenotypes (I to IX), and their pre- to postoperative changes on patient-reported outcome measures (PROMs). Methods. A questionnaire was administered to 340 patients (422 knees) who underwent primary TKA for osteoarthritis (OA) between September 2013 and June 2019. A total of 231 patients (284 knees) responded. The ­Knee Society Score 2011 (KSS 2011), Knee injury and Osteoarthritis Outcome Score-12 (KOOS-12), and Forgotten Joint Score-12 (FJS-12) were used to assess clinical outcomes. Using preoperative and postoperative anteroposterior full-leg radiographs, the arithmetic hip-knee-ankle angle (aHKA) and joint line obliquity (JLO) were calculated and classified based on the CPAK classification. To investigate the impact on PROMs, multivariable regression analyses using stepwise selection were conducted, considering factors such as age at surgery, time since surgery, BMI, sex, implant use, postoperative aHKA classification, JLO classification, and changes in aHKA and JLO classifications from preoperative to postoperative. Results. The preoperative and postoperative CPAK classifications were predominantly phenotype I (155 knees; 55%) and phenotype V (73 knees; 26%), respectively. The change in the preoperative to postoperative aHKA classification was a significant negative predictive factor for KOOS-12 and FJS-12, while postoperative apex proximal JLO was a significant negative predictive factor for KSS 2011 and KOOS-12. Conclusion. In primary TKA for OA, preoperative and postoperative CPAK phenotypes were associated with PROMs. Alteration in varus/valgus alignment from preoperative to postoperative was recognized as a negative predictive factor for both KOOS-12 and FJS-12. Moreover, the postoperative apex proximal JLO was identified as a negative factor for KSS 2011 and KOOS-12. Determining the target alignment for each preoperative phenotype with reproducibility could improve PROMs. Cite this article: Bone Joint J 2024;106-B(10):1059–1066


Bone & Joint Research
Vol. 10, Issue 3 | Pages 173 - 187
1 Mar 2021
Khury F Fuchs M Awan Malik H Leiprecht J Reichel H Faschingbauer M

Aims. To explore the clinical relevance of joint space width (JSW) narrowing on standardized-flexion (SF) radiographs in the assessment of cartilage degeneration in specific subregions seen on MRI sequences in knee osteoarthritis (OA) with neutral, valgus, and varus alignments, and potential planning of partial knee arthroplasty. Methods. We retrospectively reviewed 639 subjects, aged 45 to 79 years, in the Osteoarthritis Initiative (OAI) study, who had symptomatic knees with Kellgren and Lawrence grade 2 to 4. Knees were categorized as neutral, valgus, and varus knees by measuring hip-knee-angles on hip-knee-ankle radiographs. Femorotibial JSW was measured on posteroanterior SF radiographs using a special software. The femorotibial compartment was divided into 16 subregions, and MR-tomographic measurements of cartilage volume, thickness, and subchondral bone area were documented. Linear regression with adjustment for age, sex, body mass index, and Kellgren and Lawrence grade was used. Results. We studied 345 neutral, 87 valgus, and 207 varus knees. Radiological JSW narrowing was significantly (p < 0.01) associated with cartilage volume and thickness in medial femorotibial compartment in neutral (r = 0.78, odds ratio (OR) 2.33) and varus knees (r = 0.86, OR 1.92), and in lateral tibial subregions in valgus knees (r = 0.87, OR 3.71). A significant negative correlation was found between JSW narrowing and area of subchondral bone in external lateral tibial subregion in valgus knees (r = −0.65, p < 0.01) and in external medial tibial subregion in varus knees (r = −0.77, p < 0.01). No statistically significant correlation was found in anterior and posterior subregions. Conclusion. SF radiographs can be potentially used for initial detection of cartilage degeneration as assessed by MRI in medial and lateral but not in anterior or posterior subregions. Cite this article: Bone Joint Res 2021;10(3):173–187


Bone & Joint Research
Vol. 8, Issue 3 | Pages 126 - 135
1 Mar 2019
Sekiguchi K Nakamura S Kuriyama S Nishitani K Ito H Tanaka Y Watanabe M Matsuda S

Objectives. Unicompartmental knee arthroplasty (UKA) is one surgical option for treating symptomatic medial osteoarthritis. Clinical studies have shown the functional benefits of UKA; however, the optimal alignment of the tibial component is still debated. The purpose of this study was to evaluate the effects of tibial coronal and sagittal plane alignment in UKA on knee kinematics and cruciate ligament tension, using a musculoskeletal computer simulation. Methods. The tibial component was first aligned perpendicular to the mechanical axis of the tibia, with a 7° posterior slope (basic model). Subsequently, coronal and sagittal plane alignments were changed in a simulation programme. Kinematics and cruciate ligament tensions were simulated during weight-bearing deep knee bend and gait motions. Translation was defined as the distance between the most medial and the most lateral femoral positions throughout the cycle. Results. The femur was positioned more medially relative to the tibia, with increasing varus alignment of the tibial component. Medial/lateral (ML) translation was smallest in the 2° varus model. A greater posterior slope posteriorized the medial condyle and increased anterior cruciate ligament (ACL) tension. ML translation was increased in the > 7° posterior slope model and the 0° model. Conclusion. The current study suggests that the preferred tibial component alignment is between neutral and 2° varus in the coronal plane, and between 3° and 7° posterior slope in the sagittal plane. Varus > 4° or valgus alignment and excessive posterior slope caused excessive ML translation, which could be related to feelings of instability and could potentially have negative effects on clinical outcomes and implant durability. Cite this article: K. Sekiguchi, S. Nakamura, S. Kuriyama, K. Nishitani, H. Ito, Y. Tanaka, M. Watanabe, S. Matsuda. Bone Joint Res 2019;8:126–135. DOI: 10.1302/2046-3758.83.BJR-2018-0208.R2


Bone & Joint Research
Vol. 6, Issue 11 | Pages 623 - 630
1 Nov 2017
Suh D Kang K Son J Kwon O Baek C Koh Y

Objectives. Malalignment of the tibial component could influence the long-term survival of a total knee arthroplasty (TKA). The object of this study was to investigate the biomechanical effect of varus and valgus malalignment on the tibial component under stance-phase gait cycle loading conditions. Methods. Validated finite element models for varus and valgus malalignment by 3° and 5° were developed to evaluate the effect of malalignment on the tibial component in TKA. Maximum contact stress and contact area on a polyethylene insert, maximum contact stress on patellar button and the collateral ligament force were investigated. Results. There was greater total contact stress in the varus alignment than in the valgus, with more marked difference on the medial side. An increase in ligament force was clearly demonstrated, especially in the valgus alignment and force exerted on the medial collateral ligament also increased. Conclusion. These results highlight the importance of accurate surgical reconstruction of the coronal tibial alignment of the knee joint. Varus and valgus alignments will influence wear and ligament stability, respectively in TKA. Cite this article: D-S. Suh, K-T. Kang, J. Son, O-R. Kwon, C. Baek, Y-G. Koh. Computational study on the effect of malalignment of the tibial component on the biomechanics of total knee arthroplasty: A Finite Element Analysis. Bone Joint Res 2017;6:623–630. DOI: 10.1302/2046-3758.611.BJR-2016-0088.R2


Bone & Joint Open
Vol. 5, Issue 10 | Pages 879 - 885
14 Oct 2024
Moore J van de Graaf VA Wood JA Humburg P Colyn W Bellemans J Chen DB MacDessi SJ

Aims

This study examined windswept deformity (WSD) of the knee, comparing prevalence and contributing factors in healthy and osteoarthritic (OA) cohorts.

Methods

A case-control radiological study was undertaken comparing 500 healthy knees (250 adults) with a consecutive sample of 710 OA knees (355 adults) undergoing bilateral total knee arthroplasty. The mechanical hip-knee-ankle angle (mHKA), medial proximal tibial angle (MPTA), and lateral distal femoral angle (LDFA) were determined for each knee, and the arithmetic hip-knee-ankle angle (aHKA), joint line obliquity, and Coronal Plane Alignment of the Knee (CPAK) types were calculated. WSD was defined as a varus mHKA of < -2° in one limb and a valgus mHKA of > 2° in the contralateral limb. The primary outcome was the proportional difference in WSD prevalence between healthy and OA groups. Secondary outcomes were the proportional difference in WSD prevalence between constitutional varus and valgus CPAK types, and to explore associations between predefined variables and WSD within the OA group.


Bone & Joint Open
Vol. 4, Issue 7 | Pages 507 - 515
6 Jul 2023
Jørgensen PB Jakobsen SS Vainorius D Homilius M Hansen TB Stilling M

Aims

The Exeter short stem was designed for patients with Dorr type A femora and short-term results are promising. The aim of this study was to evaluate the minimum five-year stem migration pattern of Exeter short stems in comparison with Exeter standard stems.

Methods

In this case-control study, 25 patients (22 female) at mean age of 78 years (70 to 89) received cemented Exeter short stem (case group). Cases were selected based on Dorr type A femora and matched first by Dorr type A and then age to a control cohort of 21 patients (11 female) at mean age of 74 years (70 to 89) who received with cemented Exeter standard stems (control group). Preoperatively, all patients had primary hip osteoarthritis and no osteoporosis as confirmed by dual X-ray absorptiometry scanning. Patients were followed with radiostereometry for evaluation of stem migration (primary endpoint), evaluation of cement quality, and Oxford Hip Score. Measurements were taken preoperatively, and at three, 12, and 24 months and a minimum five-year follow-up.


Bone & Joint Research
Vol. 13, Issue 5 | Pages 226 - 236
9 May 2024
Jürgens-Lahnstein JH Petersen ET Rytter S Madsen F Søballe K Stilling M

Aims

Micromotion of the polyethylene (PE) inlay may contribute to backside PE wear in addition to articulate wear of total knee arthroplasty (TKA). Using radiostereometric analysis (RSA) with tantalum beads in the PE inlay, we evaluated PE micromotion and its relationship to PE wear.

Methods

A total of 23 patients with a mean age of 83 years (77 to 91), were available from a RSA study on cemented TKA with Maxim tibial components (Zimmer Biomet). PE inlay migration, PE wear, tibial component migration, and the anatomical knee axis were evaluated on weightbearing stereoradiographs. PE inlay wear was measured as the deepest penetration of the femoral component into the PE inlay.


Bone & Joint Open
Vol. 4, Issue 6 | Pages 408 - 415
1 Jun 2023
Ramkumar PN Shaikh HJF Woo JJ Haeberle HS Pang M Brooks PJ

Aims

The aims of the study were to report for a cohort aged younger than 40 years: 1) indications for HRA; 2) patient-reported outcomes in terms of the modified Harris Hip Score (HHS); 3) dislocation rate; and 4) revision rate.

Methods

This retrospective analysis identified 267 hips from 224 patients who underwent an hip resurfacing arthroplasty (HRA) from a single fellowship-trained surgeon using the direct lateral approach between 2007 and 2019. Inclusion criteria was minimum two-year follow-up, and age younger than 40 years. Patients were followed using a prospectively maintained institutional database.


Bone & Joint Open
Vol. 4, Issue 10 | Pages 750 - 757
10 Oct 2023
Brenneis M Thewes N Holder J Stief F Braun S

Aims

Accurate skeletal age and final adult height prediction methods in paediatric orthopaedics are crucial for determining optimal timing of growth-guiding interventions and minimizing complications in treatments of various conditions. This study aimed to evaluate the accuracy of final adult height predictions using the central peak height (CPH) method with long leg X-rays and four different multiplier tables.

Methods

This study included 31 patients who underwent temporary hemiepiphysiodesis for varus or valgus deformity of the leg between 2014 and 2020. The skeletal age at surgical intervention was evaluated using the CPH method with long leg radiographs. The true final adult height (FHTRUE) was determined when the growth plates were closed. The final height prediction accuracy of four different multiplier tables (1. Bayley and Pinneau; 2. Paley et al; 3. Sanders – Greulich and Pyle (SGP); and 4. Sanders – peak height velocity (PHV)) was then compared using either skeletal age or chronological age.


Bone & Joint Open
Vol. 4, Issue 4 | Pages 262 - 272
11 Apr 2023
Batailler C Naaim A Daxhelet J Lustig S Ollivier M Parratte S

Aims

The impact of a diaphyseal femoral deformity on knee alignment varies according to its severity and localization. The aims of this study were to determine a method of assessing the impact of diaphyseal femoral deformities on knee alignment for the varus knee, and to evaluate the reliability and the reproducibility of this method in a large cohort of osteoarthritic patients.

Methods

All patients who underwent a knee arthroplasty from 2019 to 2021 were included. Exclusion criteria were genu valgus, flexion contracture (> 5°), previous femoral osteotomy or fracture, total hip arthroplasty, and femoral rotational disorder. A total of 205 patients met the inclusion criteria. The mean age was 62.2 years (SD 8.4). The mean BMI was 33.1 kg/m2 (SD 5.5). The radiological measurements were performed twice by two independent reviewers, and included hip knee ankle (HKA) angle, mechanical medial distal femoral angle (mMDFA), anatomical medial distal femoral angle (aMDFA), femoral neck shaft angle (NSA), femoral bowing angle (FBow), the distance between the knee centre and the top of the FBow (DK), and the angle representing the FBow impact on the knee (C’KS angle).


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims

The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population.

Methods

We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics.


Bone & Joint Open
Vol. 3, Issue 5 | Pages 390 - 397
1 May 2022
Hiranaka T Suda Y Saitoh A Tanaka A Arimoto A Koide M Fujishiro T Okamoto K

The kinematic alignment (KA) approach to total knee arthroplasty (TKA) has recently increased in popularity. Accordingly, a number of derivatives have arisen and have caused confusion. Clarification is therefore needed for a better understanding of KA-TKA. Calipered (or true, pure) KA is performed by cutting the bone parallel to the articular surface, compensating for cartilage wear. In soft-tissue respecting KA, the tibial cutting surface is decided parallel to the femoral cutting surface (or trial component) with in-line traction. These approaches are categorized as unrestricted KA because there is no consideration of leg alignment or component orientation. Restricted KA is an approach where the periarthritic joint surface is replicated within a safe range, due to concerns about extreme alignments that have been considered ‘alignment outliers’ in the neutral mechanical alignment approach. More recently, functional alignment and inverse kinematic alignment have been advocated, where bone cuts are made following intraoperative planning, using intraoperative measurements acquired with computer assistance to fulfill good coordination of soft-tissue balance and alignment. The KA-TKA approach aims to restore the patients’ own harmony of three knee elements (morphology, soft-tissue balance, and alignment) and eventually the patients’ own kinematics. The respective approaches start from different points corresponding to one of the elements, yet each aim for the same goal, although the existing implants and techniques have not yet perfectly fulfilled that goal.


Bone & Joint Open
Vol. 3, Issue 8 | Pages 656 - 665
23 Aug 2022
Tran T McEwen P Peng Y Trivett A Steele R Donnelly W Clark G

Aims

The mid-term results of kinematic alignment (KA) for total knee arthroplasty (TKA) using image derived instrumentation (IDI) have not been reported in detail, and questions remain regarding ligamentous stability and revisions. This paper aims to address the following: 1) what is the distribution of alignment of KA TKAs using IDI; 2) is a TKA alignment category associated with increased risk of failure or poor patient outcomes; 3) does extending limb alignment lead to changes in soft-tissue laxity; and 4) what is the five-year survivorship and outcomes of KA TKA using IDI?

Methods

A prospective, multicentre, trial enrolled 100 patients undergoing KA TKA using IDI, with follow-up to five years. Alignment measures were conducted pre- and postoperatively to assess constitutional alignment and final implant position. Patient-reported outcome measures (PROMs) of pain and function were also included. The Australian Orthopaedic Association National Joint Arthroplasty Registry was used to assess survivorship.


Bone & Joint Open
Vol. 4, Issue 3 | Pages 210 - 218
28 Mar 2023
Searle HKC Rahman A Desai AP Mellon SJ Murray DW

Aims

To assess the incidence of radiological lateral osteoarthritis (OA) at 15 years after medial unicompartmental knee arthroplasty (UKA) and assess the relationship of lateral OA with symptoms and patient characteristics.

Methods

Cemented Phase 3 medial Oxford UKA implanted by two surgeons since 1998 for the recommended indications were prospectively followed. A 15-year cumulative revision rate for lateral OA of 5% for this series was previously reported. A total of 163 unrevised knees with 15-year (SD 1) anterior-posterior knee radiographs were studied. Lateral joint space width (JSWL) was measured and severity of lateral OA was classified as: nil/mild, moderate, and severe. Preoperative and 15-year Oxford Knee Scores (OKS) and American Knee Society Scores were determined. The effect of age, sex, BMI, and intraoperative findings was analyzed. Statistical analysis included one-way analysis of variance and Kruskal-Wallis H test, with significance set at 5%.


Bone & Joint Open
Vol. 3, Issue 6 | Pages 495 - 501
14 Jun 2022
Keohane D Sheridan GA Masterson E

Aims

Total knee arthroplasty (TKA) is a common and safe orthopaedic procedure. Zimmer Biomet's NexGen is the second most popular brand of implant used in the UK. The primary cause of revision after the first year is aseptic loosening. We present our experience of using this implant, with significant concerns around its performance with regards early aseptic loosening of the tibial component.

Methods

A retrospective, single-surgeon review was carried out of all of the NexGen Legacy Posterior Stabilized (LPS) TKAs performed in this institute. The specific model used for the index procedures was the NexGen Complete Knee System (Legacy Knee-Posterior Stabilized LPS-Flex Articular Surface, LPS-Flex Femoral Component Option, and Stemmed Nonaugmentable Tibial Component Option).


Bone & Joint Open
Vol. 3, Issue 10 | Pages 759 - 766
5 Oct 2022
Schmaranzer F Meier MK Lerch TD Hecker A Steppacher SD Novais EN Kiapour AM

Aims

To evaluate how abnormal proximal femoral anatomy affects different femoral version measurements in young patients with hip pain.

Methods

First, femoral version was measured in 50 hips of symptomatic consecutively selected patients with hip pain (mean age 20 years (SD 6), 60% (n = 25) females) on preoperative CT scans using different measurement methods: Lee et al, Reikerås et al, Tomczak et al, and Murphy et al. Neck-shaft angle (NSA) and α angle were measured on coronal and radial CT images. Second, CT scans from three patients with femoral retroversion, normal femoral version, and anteversion were used to create 3D femur models, which were manipulated to generate models with different NSAs and different cam lesions, resulting in eight models per patient. Femoral version measurements were repeated on manipulated femora.


Bone & Joint Open
Vol. 3, Issue 10 | Pages 767 - 776
5 Oct 2022
Jang SJ Kunze KN Brilliant ZR Henson M Mayman DJ Jerabek SA Vigdorchik JM Sculco PK

Aims

Accurate identification of the ankle joint centre is critical for estimating tibial coronal alignment in total knee arthroplasty (TKA). The purpose of the current study was to leverage artificial intelligence (AI) to determine the accuracy and effect of using different radiological anatomical landmarks to quantify mechanical alignment in relation to a traditionally defined radiological ankle centre.

Methods

Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A sub-cohort of 250 radiographs were annotated for landmarks relevant to knee alignment and used to train a deep learning (U-Net) workflow for angle calculation on the entire database. The radiological ankle centre was defined as the midpoint of the superior talus edge/tibial plafond. Knee alignment (hip-knee-ankle angle) was compared against 1) midpoint of the most prominent malleoli points, 2) midpoint of the soft-tissue overlying malleoli, and 3) midpoint of the soft-tissue sulcus above the malleoli.


Bone & Joint Open
Vol. 3, Issue 3 | Pages 211 - 217
1 Mar 2022
Hsu C Chen C Wang S Huang J Tong K Huang K

Aims

The Coronal Plane Alignment of the Knee (CPAK) classification is a simple and comprehensive system for predicting pre-arthritic knee alignment. However, when the CPAK classification is applied in the Asian population, which is characterized by more varus and wider distribution in lower limb alignment, modifications in the boundaries of arithmetic hip-knee-ankle angle (aHKA) and joint line obliquity (JLO) should be considered. The purposes of this study were as follows: first, to propose a modified CPAK classification based on the actual joint line obliquity (aJLO) and wider range of aHKA in the Asian population; second, to test this classification in a cohort of Asians with healthy knees; third, to propose individualized alignment targets for different CPAK types in kinematically aligned (KA) total knee arthroplasty (TKA).

Methods

The CPAK classification was modified by changing the neutral boundaries of aHKA to 0° ± 3° and using aJLO as a new variable. Radiological analysis of 214 healthy knees in 214 Asian individuals was used to assess the distribution and mean value of alignment angles of each phenotype among different classifications based on the coronal plane. Individualized alignment targets were set according to the mean lateral distal femoral angle (LDFA) and medial proximal tibial angle (MPTA) of different knee types.


Bone & Joint Research
Vol. 10, Issue 4 | Pages 250 - 258
1 Apr 2021
Kwak D Bang S Lee S Park J Yoo J

Aims

There are concerns regarding initial stability and early periprosthetic fractures in cementless hip arthroplasty using short stems. This study aimed to investigate stress on the cortical bone around the stem and micromotions between the stem and cortical bone according to femoral stem length and positioning.

Methods

In total, 12 femoral finite element models (FEMs) were constructed and tested in walking and stair-climbing. Femoral stems of three different lengths and two different positions were simulated, assuming press-fit fixation within each FEM. Stress on the cortical bone and micromotions between the stem and bone were measured in each condition.


Bone & Joint Research
Vol. 11, Issue 8 | Pages 575 - 584
17 Aug 2022
Stoddart JC Garner A Tuncer M Cobb JP van Arkel RJ

Aims

The aim of this study was to determine the risk of tibial eminence avulsion intraoperatively for bi-unicondylar knee arthroplasty (Bi-UKA), with consideration of the effect of implant positioning, overstuffing, and sex, compared to the risk for isolated medial unicondylar knee arthroplasty (UKA-M) and bicruciate-retaining total knee arthroplasty (BCR-TKA).

Methods

Two experimentally validated finite element models of tibia were implanted with UKA-M, Bi-UKA, and BCR-TKA. Intraoperative loads were applied through the condyles, anterior cruciate ligament (ACL), medial collateral ligament (MCL), and lateral collateral ligament (LCL), and the risk of fracture (ROF) was evaluated in the spine as the ratio of the 95th percentile maximum principal elastic strains over the tensile yield strain of proximal tibial bone.


Bone & Joint Open
Vol. 2, Issue 5 | Pages 351 - 358
27 May 2021
Griffiths-Jones W Chen DB Harris IA Bellemans J MacDessi SJ

Aims

Once knee arthritis and deformity have occurred, it is currently not known how to determine a patient’s constitutional (pre-arthritic) limb alignment. The purpose of this study was to describe and validate the arithmetic hip-knee-ankle (aHKA) algorithm as a straightforward method for preoperative planning and intraoperative restoration of the constitutional limb alignment in total knee arthroplasty (TKA).

Methods

A comparative cross-sectional, radiological study was undertaken of 500 normal knees and 500 arthritic knees undergoing TKA. By definition, the aHKA algorithm subtracts the lateral distal femoral angle (LDFA) from the medial proximal tibial angle (MPTA). The mechanical HKA (mHKA) of the normal group was compared to the mHKA of the arthritic group to examine the difference, specifically related to deformity in the latter. The mHKA and aHKA were then compared in the normal group to assess for differences related to joint line convergence. Lastly, the aHKA of both the normal and arthritic groups were compared to test the hypothesis that the aHKA can estimate the constitutional alignment of the limb by sharing a similar centrality and distribution with the normal population.


Bone & Joint Open
Vol. 2, Issue 12 | Pages 1057 - 1061
1 Dec 2021
Ahmad SS Weinrich L Giebel GM Beyer MR Stöckle U Konrads C

Aims

The aim of this study was to determine the association between knee alignment and the vertical orientation of the femoral neck in relation to the floor. This could be clinically important because changes of femoral neck orientation might alter chondral joint contact zones and joint reaction forces, potentially inducing problems like pain in pre-existing chondral degeneration. Further, the femoral neck orientation influences the ischiofemoral space and a small ischiofemoral distance can lead to impingement. We hypothesized that a valgus knee alignment is associated with a more vertical orientation of the femoral neck in standing position, compared to a varus knee. We further hypothesized that realignment surgery around the knee alters the vertical orientation of the femoral neck.

Methods

Long-leg standing radiographs of patients undergoing realignment surgery around the knee were used. The hip-knee-ankle angle (HKA) and the vertical orientation of the femoral neck in relation to the floor were measured, prior to surgery and after osteotomy-site-union. Linear regression was performed to determine the influence of knee alignment on the vertical orientation of the femoral neck.


Bone & Joint Open
Vol. 2, Issue 11 | Pages 974 - 980
25 Nov 2021
Allom RJ Wood JA Chen DB MacDessi SJ

Aims

It is unknown whether gap laxities measured in robotic arm-assisted total knee arthroplasty (TKA) correlate to load sensor measurements. The aim of this study was to determine whether symmetry of the maximum medial and lateral gaps in extension and flexion was predictive of knee balance in extension and flexion respectively using different maximum thresholds of intercompartmental load difference (ICLD) to define balance.

Methods

A prospective cohort study of 165 patients undergoing functionally-aligned TKA was performed (176 TKAs). With trial components in situ, medial and lateral extension and flexion gaps were measured using robotic navigation while applying valgus and varus forces. The ICLD between medial and lateral compartments was measured in extension and flexion with the load sensor. The null hypothesis was that stressed gap symmetry would not correlate directly with sensor-defined soft tissue balance.


Bone & Joint Open
Vol. 2, Issue 6 | Pages 397 - 404
1 Jun 2021
Begum FA Kayani B Magan AA Chang JS Haddad FS

Limb alignment in total knee arthroplasty (TKA) influences periarticular soft-tissue tension, biomechanics through knee flexion, and implant survival. Despite this, there is no uniform consensus on the optimal alignment technique for TKA. Neutral mechanical alignment facilitates knee flexion and symmetrical component wear but forces the limb into an unnatural position that alters native knee kinematics through the arc of knee flexion. Kinematic alignment aims to restore native limb alignment, but the safe ranges with this technique remain uncertain and the effects of this alignment technique on component survivorship remain unknown. Anatomical alignment aims to restore predisease limb alignment and knee geometry, but existing studies using this technique are based on cadaveric specimens or clinical trials with limited follow-up times. Functional alignment aims to restore the native plane and obliquity of the joint by manipulating implant positioning while limiting soft tissue releases, but the results of high-quality studies with long-term outcomes are still awaited. The drawbacks of existing studies on alignment include the use of surgical techniques with limited accuracy and reproducibility of achieving the planned alignment, poor correlation of intraoperative data to long-term functional outcomes and implant survivorship, and a paucity of studies on the safe ranges of limb alignment. Further studies on alignment in TKA should use surgical adjuncts (e.g. robotic technology) to help execute the planned alignment with improved accuracy, include intraoperative assessments of knee biomechanics and periarticular soft-tissue tension, and correlate alignment to long-term functional outcomes and survivorship.


Bone & Joint Open
Vol. 2, Issue 3 | Pages 174 - 180
17 Mar 2021
Wu DY Lam EKF

Aims

The purpose of this study is to examine the adductus impact on the second metatarsal by the nonosteotomy nonarthrodesis syndesmosis procedure for the hallux valgus deformity correction, and how it would affect the mechanical function of the forefoot in walking. For correcting the metatarsus primus varus deformity of hallux valgus feet, the syndesmosis procedure binds first metatarsal to the second metatarsal with intermetatarsal cerclage sutures.

Methods

We reviewed clinical records of a single surgical practice from its entire 2014 calendar year. In total, 71 patients (121 surgical feet) qualified for the study with a mean follow-up of 20.3 months (SD 6.2). We measured their metatarsus adductus angle with the Sgarlato’s method (SMAA), and the intermetatarsal angle (IMA) and metatarsophalangeal angle (MPA) with Hardy’s mid axial method. We also assessed their American Orthopaedic Foot & Ankle Society (AOFAS) clinical scale score, and photographic and pedobarographic images for clinical function results.


Bone & Joint Open
Vol. 2, Issue 9 | Pages 737 - 744
1 Sep 2021
Øhrn F Lian ØB Tsukanaka M Röhrl SM

Aims

Medial pivot (MP) total knee arthroplasties (TKAs) were designed to mimic native knee kinematics with their deep medial congruent fitting of the tibia to the femur almost like a ball-on-socket, and a flat lateral part. GMK Sphere is a novel MP implant. Our primary aim was to study the migration pattern of the tibial tray of this TKA.

Methods

A total of 31 patients were recruited to this single-group radiostereometric analysis (RSA) study and received a medial pivot GMK Sphere TKA. The distributions of male patients versus female patients and right versus left knees were 21:10 and 17:14, respectively. Mean BMI was 29 kg/m2 (95% confidence interval (CI) 27 to 30) and mean age at surgery was 63 years (95% CI 61 to 66). Maximum total point motions (MTPMs), medial, proximal, and anterior translations and transversal, internal, and varus rotations were calculated at three, 12, and 24 months. Patient-reported outcome measure data were also retrieved.


Bone & Joint Open
Vol. 2, Issue 12 | Pages 1035 - 1042
1 Dec 2021
Okowinski M Hjorth MH Mosegaard SB Jürgens-Lahnstein JH Storgaard Jakobsen S Hedevang Christensen P Kold S Stilling M

Aims

Femoral bone preparation using compaction technique has been shown to preserve bone and improve implant fixation in animal models. No long-term clinical outcomes are available. There are no significant long-term differences between compaction and broaching techniques for primary total hip arthroplasty (THA) in terms of migration, clinical, and radiological outcomes.

Methods

A total of 28 patients received one-stage bilateral primary THA with cementless femoral stems (56 hips). They were randomized to compaction on one femur and broaching on the contralateral femur. Overall, 13 patients were lost to the ten-year follow-up leaving 30 hips to be evaluated in terms of stem migration (using radiostereometry), radiological changes, Harris Hip Score, Oxford Hip Score, and complications.


Bone & Joint Open
Vol. 2, Issue 6 | Pages 443 - 456
28 Jun 2021
Thompson JW Corbett J Bye D Jones A Tissingh EK Nolan J

Aims

The Exeter V40 cemented polished tapered stem system has demonstrated excellent long-term outcomes. This paper presents a systematic review of the existing literature and reports on a large case series comparing implant fractures between the Exeter V40 series; 125 mm and conventional length stem systems.

Methods

A systematic literature search was performed adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. In parallel, we performed a retrospective single centre study of Exeter V40 femoral stem prosthetic fractures between April 2003 and June 2020.


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 329 - 337
1 Feb 2021
MacDessi SJ Griffiths-Jones W Harris IA Bellemans J Chen DB

Aims

A comprehensive classification for coronal lower limb alignment with predictive capabilities for knee balance would be beneficial in total knee arthroplasty (TKA). This paper describes the Coronal Plane Alignment of the Knee (CPAK) classification and examines its utility in preoperative soft tissue balance prediction, comparing kinematic alignment (KA) to mechanical alignment (MA).

Methods

A radiological analysis of 500 healthy and 500 osteoarthritic (OA) knees was used to assess the applicability of the CPAK classification. CPAK comprises nine phenotypes based on the arithmetic HKA (aHKA) that estimates constitutional limb alignment and joint line obliquity (JLO). Intraoperative balance was compared within each phenotype in a cohort of 138 computer-assisted TKAs randomized to KA or MA. Primary outcomes included descriptive analyses of healthy and OA groups per CPAK type, and comparison of balance at 10° of flexion within each type. Secondary outcomes assessed balance at 45° and 90° and bone recuts required to achieve final knee balance within each CPAK type.


Bone & Joint Open
Vol. 1, Issue 7 | Pages 339 - 345
3 Jul 2020
MacDessi SJ Griffiths-Jones W Harris IA Bellemans J Chen DB

Aims

An algorithm to determine the constitutional alignment of the lower limb once arthritic deformity has occurred would be of value when undertaking kinematically aligned total knee arthroplasty (TKA). The purpose of this study was to determine if the arithmetic hip-knee-ankle angle (aHKA) algorithm could estimate the constitutional alignment of the lower limb following development of significant arthritis.

Methods

A matched-pairs radiological study was undertaken comparing the aHKA of an osteoarthritic knee (aHKA-OA) with the mechanical HKA of the contralateral normal knee (mHKA-N). Patients with Grade 3 or 4 Kellgren-Lawrence tibiofemoral osteoarthritis in an arthritic knee undergoing TKA and Grade 0 or 1 osteoarthritis in the contralateral normal knee were included. The aHKA algorithm subtracts the lateral distal femoral angle (LDFA) from the medial proximal tibial angle (MPTA) measured on standing long leg radiographs. The primary outcome was the mean of the paired differences in the aHKA-OA and mHKA-N. Secondary outcomes included comparison of sex-based differences and capacity of the aHKA to determine the constitutional alignment based on degree of deformity.


Bone & Joint Open
Vol. 1, Issue 6 | Pages 236 - 244
11 Jun 2020
Verstraete MA Moore RE Roche M Conditt MA

Aims

The use of technology to assess balance and alignment during total knee surgery can provide an overload of numerical data to the surgeon. Meanwhile, this quantification holds the potential to clarify and guide the surgeon through the surgical decision process when selecting the appropriate bone recut or soft tissue adjustment when balancing a total knee. Therefore, this paper evaluates the potential of deploying supervised machine learning (ML) models to select a surgical correction based on patient-specific intra-operative assessments.

Methods

Based on a clinical series of 479 primary total knees and 1,305 associated surgical decisions, various ML models were developed. These models identified the indicated surgical decision based on available, intra-operative alignment, and tibiofemoral load data.


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 117 - 124
1 Jan 2020
MacDessi SJ Griffiths-Jones W Chen DB Griffiths-Jones S Wood JA Diwan AD Harris IA

Aims

It is unknown whether kinematic alignment (KA) objectively improves knee balance in total knee arthroplasty (TKA), despite this being the biomechanical rationale for its use. This study aimed to determine whether restoring the constitutional alignment using a restrictive KA protocol resulted in better quantitative knee balance than mechanical alignment (MA).

Methods

We conducted a randomized superiority trial comparing patients undergoing TKA assigned to KA within a restrictive safe zone or MA. Optimal knee balance was defined as an intercompartmental pressure difference (ICPD) of 15 psi or less using a pressure sensor. The primary endpoint was the mean intraoperative ICPD at 10° of flexion prior to knee balancing. Secondary outcomes included balance at 45° and 90°, requirements for balancing procedures, and presence of tibiofemoral lift-off.


Bone & Joint Research
Vol. 8, Issue 2 | Pages 55 - 64
1 Feb 2019
Danese I Pankaj P Scott CEH

Objectives

Elevated proximal tibial bone strain may cause unexplained pain, an important cause of unicompartmental knee arthroplasty (UKA) revision. This study investigates the effect of tibial component alignment in metal-backed (MB) and all-polyethylene (AP) fixed-bearing medial UKAs on bone strain, using an experimentally validated finite element model (FEM).

Methods

A previously experimentally validated FEM of a composite tibia implanted with a cemented fixed-bearing UKA (MB and AP) was used. Standard alignment (medial proximal tibial angle 90°, 6° posterior slope), coronal malalignment (3°, 5°, 10° varus; 3°, 5° valgus), and sagittal malalignment (0°, 3°, 6°, 9°, 12°) were analyzed. The primary outcome measure was the volume of compressively overstrained cancellous bone (VOCB) < -3000 µε. The secondary outcome measure was maximum von Mises stress in cortical bone (MSCB) over a medial region of interest.


Bone & Joint Open
Vol. 1, Issue 3 | Pages 29 - 34
13 Mar 2020
Stirling P Middleton SD Brenkel IJ Walmsley PJ

Introduction

The primary aim of this study was to describe a baseline comparison of early knee-specific functional outcomes following revision total knee arthroplasty (TKA) using metaphyseal sleeves with a matched cohort of patients undergoing primary TKA. The secondary aim was to compare incidence of complications and length of stay (LOS) between the two groups.

Methods

Patients undergoing revision TKA for all diagnoses between 2009 and 2016 had patient-reported outcome measures (PROMs) collected prospectively. PROMs consisted of the American Knee Society Score (AKSS) and Short-Form 12 (SF-12). The study cohort was identified retrospectively and demographics were collected. The cohort was matched to a control group of patients undergoing primary TKA.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 43 - 51
1 Jan 2017
Nakamura S Tian Y Tanaka Y Kuriyama S Ito H Furu M Matsuda S

Objectives

Little biomechanical information is available about kinematically aligned (KA) total knee arthroplasty (TKA). The purpose of this study was to simulate the kinematics and kinetics after KA TKA and mechanically aligned (MA) TKA with four different limb alignments.

Materials and Methods

Bone models were constructed from one volunteer (normal) and three patients with three different knee deformities (slight, moderate and severe varus). A dynamic musculoskeletal modelling system was used to analyse the kinematics and the tibiofemoral contact force. The contact stress on the tibial insert, and the stress to the resection surface and medial tibial cortex were examined by using finite element analysis.


Bone & Joint Research
Vol. 7, Issue 12 | Pages 639 - 649
1 Dec 2018
MacLeod AR Serrancoli G Fregly BJ Toms AD Gill HS

Objectives

Opening wedge high tibial osteotomy (HTO) is an established surgical procedure for the treatment of early-stage knee arthritis. Other than infection, the majority of complications are related to mechanical factors – in particular, stimulation of healing at the osteotomy site. This study used finite element (FE) analysis to investigate the effect of plate design and bridging span on interfragmentary movement (IFM) and the influence of fracture healing on plate stress and potential failure.

Materials and Methods

A 10° opening wedge HTO was created in a composite tibia. Imaging and strain gauge data were used to create and validate FE models. Models of an intact tibia and a tibia implanted with a custom HTO plate using two different bridging spans were validated against experimental data. Physiological muscle forces and different stages of osteotomy gap healing simulating up to six weeks postoperatively were then incorporated. Predictions of plate stress and IFM for the custom plate were compared against predictions for an industry standard plate (TomoFix).


Bone & Joint 360
Vol. 6, Issue 6 | Pages 17 - 20
1 Dec 2017


Aims

The purpose of this study was to compare the clinical and radiographic outcomes of total ankle arthroplasty (TAA) in patients with pre-operatively moderate and severe arthritic varus ankles to those achieved for patients with neutral ankles.

Patients and Methods

A total of 105 patients (105 ankles), matched for age, gender, body mass index, and follow-up duration, were divided into three groups by pre-operative coronal plane tibiotalar angle; neutral (< 5°), moderate (5° to 15°) and severe (> 15°) varus deformity. American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot score, a visual analogue scale (VAS), and Short Form (SF)-36 score were used to compare the clinical outcomes after a mean follow-up period of 51 months (24 to 147).


Bone & Joint Research
Vol. 5, Issue 7 | Pages 280 - 286
1 Jul 2016
Ozkurt B Sen T Cankaya D Kendir S Basarır K Tabak Y

Objectives

The purpose of this study was to develop an accurate, reliable and easily applicable method for determining the anatomical location of the joint line during revision knee arthroplasty.

Methods

The transepicondylar width (TEW), the perpendicular distance between the medial and lateral epicondyles and the distal articular surfaces (DMAD, DLAD) and the distance between the medial and lateral epicondyles and the posterior articular surfaces (PMAD, DLAD) were measured in 40 knees from 20 formalin-fixed adult cadavers (11 male and nine female; mean age at death 56.9 years, sd 9.4; 34 to 69). The ratios of the DMAD, PMAD, DLAD and PLAD to TEW were calculated.


Bone & Joint 360
Vol. 4, Issue 6 | Pages 10 - 13
1 Dec 2015

The December 2015 Knee Roundup360 looks at: Albumin and complications in knee arthroplasty; Tantalum: a knee fixation for all seasons?; Dynamic knee alignment; Tibial component design in UKA; Managing the tidal wave of revision knee arthroplasty; Scoring pain in TKR; Does anyone have a ‘normal’ tibial slope?; XLPE in TKR? A five-year clinical study; Spacers and infected revision arthroplasties; Dialysis and arthroplasty


Bone & Joint 360
Vol. 3, Issue 3 | Pages 9 - 13
1 Jun 2014
Waterson HB Philips JRA Mandalia VI Toms AD

Mechanical alignment has been a fundamental tenet of total knee arthroplasty (TKA) since modern knee replacement surgery was developed in the 1970s. The objective of mechanical alignment was to infer the greatest biomechanical advantage to the implant to prevent early loosening and failure. Over the last 40 years a great deal of innovation in TKA technology has been focusing on how to more accurately achieve mechanical alignment. Recently the concept of mechanical alignment has been challenged, and other alignment philosophies are being explored with the intention of trying to improve patient outcomes following TKA.

This article examines the evolution of the mechanical alignment concept and whether there are any viable alternatives.


Bone & Joint 360
Vol. 4, Issue 3 | Pages 12 - 14
1 Jun 2015

The June 2015 Knee Roundup360 looks at: Cruciate substituting versus retaining knee replacement; What’s behind the psychology of anterior cruciate ligament (ACL) reconstruction?; Is there a difference in total knee arthroplasty risk of revision in highly crosslinked versus conventional polyethylene?; Unicompartmental knee arthroplasty: is age the missing variable?; Satisfaction rates following total knee arthroplasty; Is knee alignment dynamic?; Unicompartmental knee arthroplasty: cemented or cementless?; Can revision knee services pay?


Bone & Joint 360
Vol. 3, Issue 1 | Pages 40 - 41
1 Feb 2014
Ivory J

Metal-on-metal (MoM) hip resurfacing was developed in the 1990s by surgeons in Birmingham, UK, as a surgical solution to the problem of osteoarthritis in younger, more active patients. Early results were promising and the procedure gained in popularity. However, adverse reports of soft-tissue reaction and failure started to appear from 2008 onwards. Surgeons may be asked to write medico-legal reports on the surgical aspects of an individual case for claimant lawyers or in defence for the NHSLA or indemnity insurers. The purpose of this article is to cover some of the aspects of the operation that may be considered in such medico-legal reports.


Bone & Joint Research
Vol. 3, Issue 10 | Pages 297 - 304
1 Oct 2014
Fitch DA Sedacki K Yang Y

Objectives

This systematic review and meta-analysis was conducted to determine the mid- to long-term clinical outcomes for a medial-pivot total knee replacement (TKR) system. The objectives were to synthesise available survivorship, Knee Society Scores (KSS), and reasons for revision for this system.

Methods

A systematic search was conducted of two online databases to identify sources of survivorship, KSS, and reasons for revision. Survivorship results were compared with values in the National Joint Registry of England, Wales, and Northern Ireland (NJR).


Bone & Joint 360
Vol. 3, Issue 1 | Pages 20 - 23
1 Feb 2014

The February 2014 Foot & Ankle Roundup360 looks at: optimal medial malleolar fixation; resurfacing in the talus; predicting outcome in mobility ankles; whether mal-aligned ankles can be successfully replaced; cartilage colonisation in bipolar ankle grafts; CTs and proof of fusion; recalcitrant Achilles tendinopathy; and recurrent fifth metatarsal stress fractures.


Bone & Joint Research
Vol. 2, Issue 8 | Pages 155 - 161
1 Aug 2013
Mathew SE Madhuri V

Objectives

The development of tibiofemoral angle in children has shown ethnic variations. However this data is unavailable for our population.

Methods

We measured the tibiofemoral angle (TFA) and intercondylar and intermalleolar distances in 360 children aged between two and 18 years, dividing them into six interrupted age group intervals: two to three years; five to six years; eight to nine years; 11 to 12 years; 14 to 15Â years; and 17 to 18 years. Each age group comprised 30 boys and 30 girls. Other variables recorded included standing height, sitting height, weight, thigh length, leg length and length of the lower limb.