Advertisement for orthosearch.org.uk
Results 1 - 33 of 33
Results per page:
Bone & Joint Research
Vol. 13, Issue 9 | Pages 507 - 512
18 Sep 2024
Farrow L Meek D Leontidis G Campbell M Harrison E Anderson L

Despite the vast quantities of published artificial intelligence (AI) algorithms that target trauma and orthopaedic applications, very few progress to inform clinical practice. One key reason for this is the lack of a clear pathway from development to deployment. In order to assist with this process, we have developed the Clinical Practice Integration of Artificial Intelligence (CPI-AI) framework – a five-stage approach to the clinical practice adoption of AI in the setting of trauma and orthopaedics, based on the IDEAL principles (. https://www.ideal-collaboration.net/. ). Adherence to the framework would provide a robust evidence-based mechanism for developing trust in AI applications, where the underlying algorithms are unlikely to be fully understood by clinical teams. Cite this article: Bone Joint Res 2024;13(9):507–512


Bone & Joint Research
Vol. 13, Issue 10 | Pages 588 - 595
17 Oct 2024
Breu R Avelar C Bertalan Z Grillari J Redl H Ljuhar R Quadlbauer S Hausner T

Aims. The aim of this study was to create artificial intelligence (AI) software with the purpose of providing a second opinion to physicians to support distal radius fracture (DRF) detection, and to compare the accuracy of fracture detection of physicians with and without software support. Methods. The dataset consisted of 26,121 anonymized anterior-posterior (AP) and lateral standard view radiographs of the wrist, with and without DRF. The convolutional neural network (CNN) model was trained to detect the presence of a DRF by comparing the radiographs containing a fracture to the inconspicuous ones. A total of 11 physicians (six surgeons in training and five hand surgeons) assessed 200 pairs of randomly selected digital radiographs of the wrist (AP and lateral) for the presence of a DRF. The same images were first evaluated without, and then with, the support of the CNN model, and the diagnostic accuracy of the two methods was compared. Results. At the time of the study, the CNN model showed an area under the receiver operating curve of 0.97. AI assistance improved the physician’s sensitivity (correct fracture detection) from 80% to 87%, and the specificity (correct fracture exclusion) from 91% to 95%. The overall error rate (combined false positive and false negative) was reduced from 14% without AI to 9% with AI. Conclusion. The use of a CNN model as a second opinion can improve the diagnostic accuracy of DRF detection in the study setting. Cite this article: Bone Joint Res 2024;13(10):588–595


Bone & Joint Research
Vol. 12, Issue 7 | Pages 447 - 454
10 Jul 2023
Lisacek-Kiosoglous AB Powling AS Fontalis A Gabr A Mazomenos E Haddad FS

The use of artificial intelligence (AI) is rapidly growing across many domains, of which the medical field is no exception. AI is an umbrella term defining the practical application of algorithms to generate useful output, without the need of human cognition. Owing to the expanding volume of patient information collected, known as ‘big data’, AI is showing promise as a useful tool in healthcare research and across all aspects of patient care pathways. Practical applications in orthopaedic surgery include: diagnostics, such as fracture recognition and tumour detection; predictive models of clinical and patient-reported outcome measures, such as calculating mortality rates and length of hospital stay; and real-time rehabilitation monitoring and surgical training. However, clinicians should remain cognizant of AI’s limitations, as the development of robust reporting and validation frameworks is of paramount importance to prevent avoidable errors and biases. The aim of this review article is to provide a comprehensive understanding of AI and its subfields, as well as to delineate its existing clinical applications in trauma and orthopaedic surgery. Furthermore, this narrative review expands upon the limitations of AI and future direction. Cite this article: Bone Joint Res 2023;12(7):447–454


Bone & Joint Open
Vol. 4, Issue 9 | Pages 696 - 703
11 Sep 2023
Ormond MJ Clement ND Harder BG Farrow L Glester A

Aims. The principles of evidence-based medicine (EBM) are the foundation of modern medical practice. Surgeons are familiar with the commonly used statistical techniques to test hypotheses, summarize findings, and provide answers within a specified range of probability. Based on this knowledge, they are able to critically evaluate research before deciding whether or not to adopt the findings into practice. Recently, there has been an increased use of artificial intelligence (AI) to analyze information and derive findings in orthopaedic research. These techniques use a set of statistical tools that are increasingly complex and may be unfamiliar to the orthopaedic surgeon. It is unclear if this shift towards less familiar techniques is widely accepted in the orthopaedic community. This study aimed to provide an exploration of understanding and acceptance of AI use in research among orthopaedic surgeons. Methods. Semi-structured in-depth interviews were carried out on a sample of 12 orthopaedic surgeons. Inductive thematic analysis was used to identify key themes. Results. The four intersecting themes identified were: 1) validity in traditional research, 2) confusion around the definition of AI, 3) an inability to validate AI research, and 4) cautious optimism about AI research. Underpinning these themes is the notion of a validity heuristic that is strongly rooted in traditional research teaching and embedded in medical and surgical training. Conclusion. Research involving AI sometimes challenges the accepted traditional evidence-based framework. This can give rise to confusion among orthopaedic surgeons, who may be unable to confidently validate findings. In our study, the impact of this was mediated by cautious optimism based on an ingrained validity heuristic that orthopaedic surgeons develop through their medical training. Adding to this, the integration of AI into everyday life works to reduce suspicion and aid acceptance. Cite this article: Bone Jt Open 2023;4(9):696–703


Bone & Joint Open
Vol. 3, Issue 1 | Pages 93 - 97
10 Jan 2022
Kunze KN Orr M Krebs V Bhandari M Piuzzi NS

Artificial intelligence and machine-learning analytics have gained extensive popularity in recent years due to their clinically relevant applications. A wide range of proof-of-concept studies have demonstrated the ability of these analyses to personalize risk prediction, detect implant specifics from imaging, and monitor and assess patient movement and recovery. Though these applications are exciting and could potentially influence practice, it is imperative to understand when these analyses are indicated and where the data are derived from, prior to investing resources and confidence into the results and conclusions. In this article, we review the current benefits and potential limitations of machine-learning for the orthopaedic surgeon with a specific emphasis on data quality


Bone & Joint Research
Vol. 13, Issue 4 | Pages 184 - 192
18 Apr 2024
Morita A Iida Y Inaba Y Tezuka T Kobayashi N Choe H Ike H Kawakami E

Aims. This study was designed to develop a model for predicting bone mineral density (BMD) loss of the femur after total hip arthroplasty (THA) using artificial intelligence (AI), and to identify factors that influence the prediction. Additionally, we virtually examined the efficacy of administration of bisphosphonate for cases with severe BMD loss based on the predictive model. Methods. The study included 538 joints that underwent primary THA. The patients were divided into groups using unsupervised time series clustering for five-year BMD loss of Gruen zone 7 postoperatively, and a machine-learning model to predict the BMD loss was developed. Additionally, the predictor for BMD loss was extracted using SHapley Additive exPlanations (SHAP). The patient-specific efficacy of bisphosphonate, which is the most important categorical predictor for BMD loss, was examined by calculating the change in predictive probability when hypothetically switching between the inclusion and exclusion of bisphosphonate. Results. Time series clustering allowed us to divide the patients into two groups, and the predictive factors were identified including patient- and operation-related factors. The area under the receiver operating characteristic (ROC) curve (AUC) for the BMD loss prediction averaged 0.734. Virtual administration of bisphosphonate showed on average 14% efficacy in preventing BMD loss of zone 7. Additionally, stem types and preoperative triglyceride (TG), creatinine (Cr), estimated glomerular filtration rate (eGFR), and creatine kinase (CK) showed significant association with the estimated patient-specific efficacy of bisphosphonate. Conclusion. Periprosthetic BMD loss after THA is predictable based on patient- and operation-related factors, and optimal prescription of bisphosphonate based on the prediction may prevent BMD loss. Cite this article: Bone Joint Res 2024;13(4):184–192


Bone & Joint Research
Vol. 12, Issue 8 | Pages 494 - 496
9 Aug 2023
Clement ND Simpson AHRW

Cite this article: Bone Joint Res 2023;12(8):494–496.


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 585 - 586
17 Apr 2023
Leopold SS Haddad FS Sandell LJ Swiontkowski M


Bone & Joint Research
Vol. 7, Issue 3 | Pages 223 - 225
1 Mar 2018
Jones LD Golan D Hanna SA Ramachandran M


Bone & Joint Open
Vol. 5, Issue 8 | Pages 671 - 680
14 Aug 2024
Fontalis A Zhao B Putzeys P Mancino F Zhang S Vanspauwen T Glod F Plastow R Mazomenos E Haddad FS

Aims. Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement. Methods. This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy. Results. We identified nine predictors from an analysis of baseline spinopelvic characteristics and surgical planning parameters. Using fivefold cross-validation, the LGBM achieved 70.2% impingement prediction accuracy. With impingement data, the LGBM estimated direction with 85% accuracy, while the support vector machine (SVM) determined impingement type with 72.9% accuracy. After integrating imaging data with a multilayer perceptron (tabular) and a convolutional neural network (radiograph), the LGBM’s prediction was 68.1%. Both combined and LGBM-only had similar impingement direction prediction rates (around 84.5%). Conclusion. This study is a pioneering effort in leveraging AI for impingement prediction in THA, utilizing a comprehensive, real-world clinical dataset. Our machine-learning algorithm demonstrated promising accuracy in predicting impingement, its type, and direction. While the addition of imaging data to our deep-learning algorithm did not boost accuracy, the potential for refined annotations, such as landmark markings, offers avenues for future enhancement. Prior to clinical integration, external validation and larger-scale testing of this algorithm are essential. Cite this article: Bone Jt Open 2024;5(8):671–680


Bone & Joint Open
Vol. 3, Issue 11 | Pages 877 - 884
14 Nov 2022
Archer H Reine S Alshaikhsalama A Wells J Kohli A Vazquez L Hummer A DiFranco MD Ljuhar R Xi Y Chhabra A

Aims. Hip dysplasia (HD) leads to premature osteoarthritis. Timely detection and correction of HD has been shown to improve pain, functional status, and hip longevity. Several time-consuming radiological measurements are currently used to confirm HD. An artificial intelligence (AI) software named HIPPO automatically locates anatomical landmarks on anteroposterior pelvis radiographs and performs the needed measurements. The primary aim of this study was to assess the reliability of this tool as compared to multi-reader evaluation in clinically proven cases of adult HD. The secondary aims were to assess the time savings achieved and evaluate inter-reader assessment. Methods. A consecutive preoperative sample of 130 HD patients (256 hips) was used. This cohort included 82.3% females (n = 107) and 17.7% males (n = 23) with median patient age of 28.6 years (interquartile range (IQR) 22.5 to 37.2). Three trained readers’ measurements were compared to AI outputs of lateral centre-edge angle (LCEA), caput-collum-diaphyseal (CCD) angle, pelvic obliquity, Tönnis angle, Sharp’s angle, and femoral head coverage. Intraclass correlation coefficients (ICC) and Bland-Altman analyses were obtained. Results. Among 256 hips with AI outputs, all six hip AI measurements were successfully obtained. The AI-reader correlations were generally good (ICC 0.60 to 0.74) to excellent (ICC > 0.75). There was lower agreement for CCD angle measurement. Most widely used measurements for HD diagnosis (LCEA and Tönnis angle) demonstrated good to excellent inter-method reliability (ICC 0.71 to 0.86 and 0.82 to 0.90, respectively). The median reading time for the three readers and AI was 212 (IQR 197 to 230), 131 (IQR 126 to 147), 734 (IQR 690 to 786), and 41 (IQR 38 to 44) seconds, respectively. Conclusion. This study showed that AI-based software demonstrated reliable radiological assessment of patients with HD with significant interpretation-related time savings. Cite this article: Bone Jt Open 2022;3(11):877–884


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1216 - 1222
1 Nov 2024
Castagno S Gompels B Strangmark E Robertson-Waters E Birch M van der Schaar M McCaskie AW

Aims. Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make predictions, offers a pathway towards more personalized and tailored surgical treatments. This approach is particularly relevant to prevalent joint diseases such as osteoarthritis (OA). In contrast to end-stage disease, where joint arthroplasty provides excellent results, early stages of OA currently lack effective therapies to halt or reverse progression. Accurate prediction of OA progression is crucial if timely interventions are to be developed, to enhance patient care and optimize the design of clinical trials. Methods. A systematic review was conducted in accordance with PRISMA guidelines. We searched MEDLINE and Embase on 5 May 2024 for studies utilizing ML to predict OA progression. Titles and abstracts were independently screened, followed by full-text reviews for studies that met the eligibility criteria. Key information was extracted and synthesized for analysis, including types of data (such as clinical, radiological, or biochemical), definitions of OA progression, ML algorithms, validation methods, and outcome measures. Results. Out of 1,160 studies initially identified, 39 were included. Most studies (85%) were published between 2020 and 2024, with 82% using publicly available datasets, primarily the Osteoarthritis Initiative. ML methods were predominantly supervised, with significant variability in the definitions of OA progression: most studies focused on structural changes (59%), while fewer addressed pain progression or both. Deep learning was used in 44% of studies, while automated ML was used in 5%. There was a lack of standardization in evaluation metrics and limited external validation. Interpretability was explored in 54% of studies, primarily using SHapley Additive exPlanations. Conclusion. Our systematic review demonstrates the feasibility of ML models in predicting OA progression, but also uncovers critical limitations that currently restrict their clinical applicability. Future priorities should include diversifying data sources, standardizing outcome measures, enforcing rigorous validation, and integrating more sophisticated algorithms. This paradigm shift from predictive modelling to actionable clinical tools has the potential to transform patient care and disease management in orthopaedic practice. Cite this article: Bone Joint J 2024;106-B(11):1216–1222


Bone & Joint Open
Vol. 3, Issue 10 | Pages 767 - 776
5 Oct 2022
Jang SJ Kunze KN Brilliant ZR Henson M Mayman DJ Jerabek SA Vigdorchik JM Sculco PK

Aims. Accurate identification of the ankle joint centre is critical for estimating tibial coronal alignment in total knee arthroplasty (TKA). The purpose of the current study was to leverage artificial intelligence (AI) to determine the accuracy and effect of using different radiological anatomical landmarks to quantify mechanical alignment in relation to a traditionally defined radiological ankle centre. Methods. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A sub-cohort of 250 radiographs were annotated for landmarks relevant to knee alignment and used to train a deep learning (U-Net) workflow for angle calculation on the entire database. The radiological ankle centre was defined as the midpoint of the superior talus edge/tibial plafond. Knee alignment (hip-knee-ankle angle) was compared against 1) midpoint of the most prominent malleoli points, 2) midpoint of the soft-tissue overlying malleoli, and 3) midpoint of the soft-tissue sulcus above the malleoli. Results. A total of 932 bilateral full-limb radiographs (1,864 knees) were measured at a rate of 20.63 seconds/image. The knee alignment using the radiological ankle centre was accurate against ground truth radiologist measurements (inter-class correlation coefficient (ICC) = 0.99 (0.98 to 0.99)). Compared to the radiological ankle centre, the mean midpoint of the malleoli was 2.3 mm (SD 1.3) lateral and 5.2 mm (SD 2.4) distal, shifting alignment by 0.34. o. (SD 2.4. o. ) valgus, whereas the midpoint of the soft-tissue sulcus was 4.69 mm (SD 3.55) lateral and 32.4 mm (SD 12.4) proximal, shifting alignment by 0.65. o. (SD 0.55. o. ) valgus. On the intermalleolar line, measuring a point at 46% (SD 2%) of the intermalleolar width from the medial malleoli (2.38 mm medial adjustment from midpoint) resulted in knee alignment identical to using the radiological ankle centre. Conclusion. The current study leveraged AI to create a consistent and objective model that can estimate patient-specific adjustments necessary for optimal landmark usage in extramedullary and computer-guided navigation for tibial coronal alignment to match radiological planning. Cite this article: Bone Jt Open 2022;3(10):767–776


Bone & Joint Open
Vol. 2, Issue 10 | Pages 879 - 885
20 Oct 2021
Oliveira e Carmo L van den Merkhof A Olczak J Gordon M Jutte PC Jaarsma RL IJpma FFA Doornberg JN Prijs J

Aims

The number of convolutional neural networks (CNN) available for fracture detection and classification is rapidly increasing. External validation of a CNN on a temporally separate (separated by time) or geographically separate (separated by location) dataset is crucial to assess generalizability of the CNN before application to clinical practice in other institutions. We aimed to answer the following questions: are current CNNs for fracture recognition externally valid?; which methods are applied for external validation (EV)?; and, what are reported performances of the EV sets compared to the internal validation (IV) sets of these CNNs?

Methods

The PubMed and Embase databases were systematically searched from January 2010 to October 2020 according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The type of EV, characteristics of the external dataset, and diagnostic performance characteristics on the IV and EV datasets were collected and compared. Quality assessment was conducted using a seven-item checklist based on a modified Methodologic Index for NOn-Randomized Studies instrument (MINORS).


Bone & Joint Open
Vol. 4, Issue 3 | Pages 168 - 181
14 Mar 2023
Dijkstra H Oosterhoff JHF van de Kuit A IJpma FFA Schwab JH Poolman RW Sprague S Bzovsky S Bhandari M Swiontkowski M Schemitsch EH Doornberg JN Hendrickx LAM

Aims

To develop prediction models using machine-learning (ML) algorithms for 90-day and one-year mortality prediction in femoral neck fracture (FNF) patients aged 50 years or older based on the Hip fracture Evaluation with Alternatives of Total Hip arthroplasty versus Hemiarthroplasty (HEALTH) and Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trials.

Methods

This study included 2,388 patients from the HEALTH and FAITH trials, with 90-day and one-year mortality proportions of 3.0% (71/2,388) and 6.4% (153/2,388), respectively. The mean age was 75.9 years (SD 10.8) and 65.9% of patients (1,574/2,388) were female. The algorithms included patient and injury characteristics. Six algorithms were developed, internally validated and evaluated across discrimination (c-statistic; discriminative ability between those with risk of mortality and those without), calibration (observed outcome compared to the predicted probability), and the Brier score (composite of discrimination and calibration).


Bone & Joint Research
Vol. 12, Issue 9 | Pages 590 - 597
20 Sep 2023
Uemura K Otake Y Takashima K Hamada H Imagama T Takao M Sakai T Sato Y Okada S Sugano N

Aims

This study aimed to develop and validate a fully automated system that quantifies proximal femoral bone mineral density (BMD) from CT images.

Methods

The study analyzed 978 pairs of hip CT and dual-energy X-ray absorptiometry (DXA) measurements of the proximal femur (DXA-BMD) collected from three institutions. From the CT images, the femur and a calibration phantom were automatically segmented using previously trained deep-learning models. The Hounsfield units of each voxel were converted into density (mg/cm3). Then, a deep-learning model trained by manual landmark selection of 315 cases was developed to select the landmarks at the proximal femur to rotate the CT volume to the neutral position. Finally, the CT volume of the femur was projected onto the coronal plane, and the areal BMD of the proximal femur (CT-aBMD) was quantified. CT-aBMD correlated to DXA-BMD, and a receiver operating characteristic (ROC) analysis quantified the accuracy in diagnosing osteoporosis.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 139 - 146
15 Feb 2024
Wright BM Bodnar MS Moore AD Maseda MC Kucharik MP Diaz CC Schmidt CM Mir HR

Aims. While internet search engines have been the primary information source for patients’ questions, artificial intelligence large language models like ChatGPT are trending towards becoming the new primary source. The purpose of this study was to determine if ChatGPT can answer patient questions about total hip (THA) and knee arthroplasty (TKA) with consistent accuracy, comprehensiveness, and easy readability. Methods. We posed the 20 most Google-searched questions about THA and TKA, plus ten additional postoperative questions, to ChatGPT. Each question was asked twice to evaluate for consistency in quality. Following each response, we responded with, “Please explain so it is easier to understand,” to evaluate ChatGPT’s ability to reduce response reading grade level, measured as Flesch-Kincaid Grade Level (FKGL). Five resident physicians rated the 120 responses on 1 to 5 accuracy and comprehensiveness scales. Additionally, they answered a “yes” or “no” question regarding acceptability. Mean scores were calculated for each question, and responses were deemed acceptable if ≥ four raters answered “yes.”. Results. The mean accuracy and comprehensiveness scores were 4.26 (95% confidence interval (CI) 4.19 to 4.33) and 3.79 (95% CI 3.69 to 3.89), respectively. Out of all the responses, 59.2% (71/120; 95% CI 50.0% to 67.7%) were acceptable. ChatGPT was consistent when asked the same question twice, giving no significant difference in accuracy (t = 0.821; p = 0.415), comprehensiveness (t = 1.387; p = 0.171), acceptability (χ. 2. = 1.832; p = 0.176), and FKGL (t = 0.264; p = 0.793). There was a significantly lower FKGL (t = 2.204; p = 0.029) for easier responses (11.14; 95% CI 10.57 to 11.71) than original responses (12.15; 95% CI 11.45 to 12.85). Conclusion. ChatGPT answered THA and TKA patient questions with accuracy comparable to previous reports of websites, with adequate comprehensiveness, but with limited acceptability as the sole information source. ChatGPT has potential for answering patient questions about THA and TKA, but needs improvement. Cite this article: Bone Jt Open 2024;5(2):139–146


Bone & Joint Open
Vol. 4, Issue 11 | Pages 825 - 831
1 Nov 2023
Joseph PJS Khattak M Masudi ST Minta L Perry DC

Aims. Hip disease is common in children with cerebral palsy (CP) and can decrease quality of life and function. Surveillance programmes exist to improve outcomes by treating hip disease at an early stage using radiological surveillance. However, studies and surveillance programmes report different radiological outcomes, making it difficult to compare. We aimed to identify the most important radiological measurements and develop a core measurement set (CMS) for clinical practice, research, and surveillance programmes. Methods. A systematic review identified a list of measurements previously used in studies reporting radiological hip outcomes in children with CP. These measurements informed a two-round Delphi study, conducted among orthopaedic surgeons and specialist physiotherapists. Participants rated each measurement on a nine-point Likert scale (‘not important’ to ‘critically important’). A consensus meeting was held to finalize the CMS. Results. Overall, 14 distinct measurements were identified in the systematic review, with Reimer’s migration percentage being the most frequently reported. These measurements were presented over the two rounds of the Delphi process, along with two additional measurements that were suggested by participants. Ultimately, two measurements, Reimer’s migration percentage and femoral head-shaft angle, were included in the CMS. Conclusion. This use of a minimum standardized set of measurements has the potential to encourage uniformity across hip surveillance programmes, and may streamline the development of tools, such as artificial intelligence systems to automate the analysis in surveillance programmes. This core set should be the minimum requirement in clinical studies, allowing clinicians to add to this as needed, which will facilitate comparisons to be drawn between studies and future meta-analyses. Cite this article: Bone Jt Open 2023;4(11):825–831


Bone & Joint Open
Vol. 5, Issue 1 | Pages 9 - 19
16 Jan 2024
Dijkstra H van de Kuit A de Groot TM Canta O Groot OQ Oosterhoff JH Doornberg JN

Aims

Machine-learning (ML) prediction models in orthopaedic trauma hold great promise in assisting clinicians in various tasks, such as personalized risk stratification. However, an overview of current applications and critical appraisal to peer-reviewed guidelines is lacking. The objectives of this study are to 1) provide an overview of current ML prediction models in orthopaedic trauma; 2) evaluate the completeness of reporting following the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement; and 3) assess the risk of bias following the Prediction model Risk Of Bias Assessment Tool (PROBAST) tool.

Methods

A systematic search screening 3,252 studies identified 45 ML-based prediction models in orthopaedic trauma up to January 2023. The TRIPOD statement assessed transparent reporting and the PROBAST tool the risk of bias.


Bone & Joint Research
Vol. 13, Issue 3 | Pages 101 - 109
4 Mar 2024
Higashihira S Simpson SJ Morita A Suryavanshi JR Arnold CJ Natoli RM Greenfield EM

Aims

Biofilm infections are among the most challenging complications in orthopaedics, as bacteria within the biofilms are protected from the host immune system and many antibiotics. Halicin exhibits broad-spectrum activity against many planktonic bacteria, and previous studies have demonstrated that halicin is also effective against Staphylococcus aureus biofilms grown on polystyrene or polypropylene substrates. However, the effectiveness of many antibiotics can be substantially altered depending on which orthopaedically relevant substrates the biofilms grow. This study, therefore, evaluated the activity of halicin against less mature and more mature S. aureus biofilms grown on titanium alloy, cobalt-chrome, ultra-high molecular weight polyethylene (UHMWPE), devitalized muscle, or devitalized bone.

Methods

S. aureus-Xen36 biofilms were grown on the various substrates for 24 hours or seven days. Biofilms were incubated with various concentrations of halicin or vancomycin and then allowed to recover without antibiotics. Minimal biofilm eradication concentrations (MBECs) were defined by CFU counting and resazurin reduction assays, and were compared with the planktonic minimal inhibitory concentrations (MICs).


Bone & Joint Open
Vol. 4, Issue 4 | Pages 250 - 261
7 Apr 2023
Sharma VJ Adegoke JA Afara IO Stok K Poon E Gordon CL Wood BR Raman J

Aims

Disorders of bone integrity carry a high global disease burden, frequently requiring intervention, but there is a paucity of methods capable of noninvasive real-time assessment. Here we show that miniaturized handheld near-infrared spectroscopy (NIRS) scans, operated via a smartphone, can assess structural human bone properties in under three seconds.

Methods

A hand-held NIR spectrometer was used to scan bone samples from 20 patients and predict: bone volume fraction (BV/TV); and trabecular (Tb) and cortical (Ct) thickness (Th), porosity (Po), and spacing (Sp).


Bone & Joint Open
Vol. 4, Issue 6 | Pages 399 - 407
1 Jun 2023
Yeramosu T Ahmad W Satpathy J Farrar JM Golladay GJ Patel NK

Aims

To identify variables independently associated with same-day discharge (SDD) of patients following revision total knee arthroplasty (rTKA) and to develop machine learning algorithms to predict suitable candidates for outpatient rTKA.

Methods

Data were obtained from the American College of Surgeons National Quality Improvement Programme (ACS-NSQIP) database from the years 2018 to 2020. Patients with elective, unilateral rTKA procedures and a total hospital length of stay between zero and four days were included. Demographic, preoperative, and intraoperative variables were analyzed. A multivariable logistic regression (MLR) model and various machine learning techniques were compared using area under the curve (AUC), calibration, and decision curve analysis. Important and significant variables were identified from the models.


Bone & Joint Open
Vol. 5, Issue 3 | Pages 154 - 161
1 Mar 2024
Homma Y Zhuang X Watari T Hayashi K Baba T Kamath A Ishijima M

Aims

It is important to analyze objectively the hammering sound in cup press-fit technique in total hip arthroplasty (THA) in order to better understand the change of the sound during impaction. We hypothesized that a specific characteristic would present in a hammering sound with successful fixation. We designed the study to quantitatively investigate the acoustic characteristics during cementless cup impaction in THA.

Methods

In 52 THAs performed between November 2018 and April 2022, the acoustic parameters of the hammering sound of 224 impacts of successful press-fit fixation, and 55 impacts of unsuccessful press-fit fixation, were analyzed. The successful fixation was defined if the following two criteria were met: 1) intraoperatively, the stability of the cup was retained after manual application of the torque test; and 2) at one month postoperatively, the cup showed no translation on radiograph. Each hammering sound was converted to sound pressures in 24 frequency bands by fast Fourier transform analysis. Basic patient characteristics were assessed as potential contributors to the hammering sound.


Bone & Joint Open
Vol. 4, Issue 3 | Pages 154 - 161
28 Mar 2023
Homma Y Zhuang X Watari T Hayashi K Baba T Kamath A Ishijima M

Aims

It is important to analyze objectively the hammering sound in cup press-fit technique in total hip arthroplasty (THA) in order to better understand the change of the sound during impaction. We hypothesized that a specific characteristic would present in a hammering sound with successful fixation. We designed the study to quantitatively investigate the acoustic characteristics during cementless cup impaction in THA.

Methods

In 52 THAs performed between November 2018 and April 2022, the acoustic parameters of the hammering sound of 224 impacts of successful press-fit fixation, and 55 impacts of unsuccessful press-fit fixation, were analyzed. The successful fixation was defined if the following two criteria were met: 1) intraoperatively, the stability of the cup was retained after manual application of the torque test; and 2) at one month postoperatively, the cup showed no translation on radiograph. Each hammering sound was converted to sound pressures in 24 frequency bands by fast Fourier transform analysis. Basic patient characteristics were assessed as potential contributors to the hammering sound.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 512 - 521
1 Sep 2023
Langenberger B Schrednitzki D Halder AM Busse R Pross CM

Aims

A substantial fraction of patients undergoing knee arthroplasty (KA) or hip arthroplasty (HA) do not achieve an improvement as high as the minimal clinically important difference (MCID), i.e. do not achieve a meaningful improvement. Using three patient-reported outcome measures (PROMs), our aim was: 1) to assess machine learning (ML), the simple pre-surgery PROM score, and logistic-regression (LR)-derived performance in their prediction of whether patients undergoing HA or KA achieve an improvement as high or higher than a calculated MCID; and 2) to test whether ML is able to outperform LR or pre-surgery PROM scores in predictive performance.

Methods

MCIDs were derived using the change difference method in a sample of 1,843 HA and 1,546 KA patients. An artificial neural network, a gradient boosting machine, least absolute shrinkage and selection operator (LASSO) regression, ridge regression, elastic net, random forest, LR, and pre-surgery PROM scores were applied to predict MCID for the following PROMs: EuroQol five-dimension, five-level questionnaire (EQ-5D-5L), EQ visual analogue scale (EQ-VAS), Hip disability and Osteoarthritis Outcome Score-Physical Function Short-form (HOOS-PS), and Knee injury and Osteoarthritis Outcome Score-Physical Function Short-form (KOOS-PS).


Bone & Joint Research
Vol. 10, Issue 12 | Pages 840 - 843
15 Dec 2021
Al-Hourani K Tsang SJ Simpson AHRW


Bone & Joint Open
Vol. 4, Issue 5 | Pages 338 - 356
10 May 2023
Belt M Robben B Smolders JMH Schreurs BW Hannink G Smulders K

Aims

To map literature on prognostic factors related to outcomes of revision total knee arthroplasty (rTKA), to identify extensively studied factors and to guide future research into what domains need further exploration.

Methods

We performed a systematic literature search in MEDLINE, Embase, and Web of Science. The search string included multiple synonyms of the following keywords: "revision TKA", "outcome" and "prognostic factor". We searched for studies assessing the association between at least one prognostic factor and at least one outcome measure after rTKA surgery. Data on sample size, study design, prognostic factors, outcomes, and the direction of the association was extracted and included in an evidence map.


Bone & Joint Research
Vol. 9, Issue 10 | Pages 653 - 666
7 Oct 2020
Li W Li G Chen W Cong L

Aims

The aim of this study was to systematically compare the safety and accuracy of robot-assisted (RA) technique with conventional freehand with/without fluoroscopy-assisted (CT) pedicle screw insertion for spine disease.

Methods

A systematic search was performed on PubMed, EMBASE, the Cochrane Library, MEDLINE, China National Knowledge Infrastructure (CNKI), and WANFANG for randomized controlled trials (RCTs) that investigated the safety and accuracy of RA compared with conventional freehand with/without fluoroscopy-assisted pedicle screw insertion for spine disease from 2012 to 2019. This meta-analysis used Mantel-Haenszel or inverse variance method with mixed-effects model for heterogeneity, calculating the odds ratio (OR), mean difference (MD), standardized mean difference (SMD), and 95% confidence intervals (CIs). The results of heterogeneity, subgroup analysis, and risk of bias were analyzed.


Bone & Joint Open
Vol. 2, Issue 2 | Pages 111 - 118
8 Feb 2021
Pettit M Shukla S Zhang J Sunil Kumar KH Khanduja V

Aims

The ongoing COVID-19 pandemic has disrupted and delayed medical and surgical examinations where attendance is required in person. Our article aims to outline the validity of online assessment, the range of benefits to both candidate and assessor, and the challenges to its implementation. In addition, we propose pragmatic suggestions for its introduction into medical assessment.

Methods

We reviewed the literature concerning the present status of online medical and surgical assessment to establish the perceived benefits, limitations, and potential problems with this method of assessment.


Bone & Joint Research
Vol. 9, Issue 9 | Pages 543 - 553
1 Sep 2020
Bakirci E Tschan K May RD Ahmad SS Kleer B Gantenbein B

Aims

The anterior cruciate ligament (ACL) is known to have a poor wound healing capacity, whereas other ligaments outside of the knee joint capsule such as the medial collateral ligament (MCL) apparently heal more easily. Plasmin has been identified as a major component in the synovial fluid that varies among patients. The aim of this study was to test whether plasmin, a component of synovial fluid, could be a main factor responsible for the poor wound healing capacity of the ACL.

Methods

The effects of increasing concentrations of plasmin (0, 0.1, 1, 10, and 50 µg/ml) onto the wound closing speed (WCS) of primary ACL-derived ligamentocytes (ACL-LCs) were tested using wound scratch assay and time-lapse phase-contrast microscopy. Additionally, relative expression changes (quantitative PCR (qPCR)) of major LC-relevant genes and catabolic genes were investigated. The positive controls were 10% fetal calf serum (FCS) and platelet-derived growth factor (PDGF).


Bone & Joint Open
Vol. 1, Issue 6 | Pages 236 - 244
11 Jun 2020
Verstraete MA Moore RE Roche M Conditt MA

Aims

The use of technology to assess balance and alignment during total knee surgery can provide an overload of numerical data to the surgeon. Meanwhile, this quantification holds the potential to clarify and guide the surgeon through the surgical decision process when selecting the appropriate bone recut or soft tissue adjustment when balancing a total knee. Therefore, this paper evaluates the potential of deploying supervised machine learning (ML) models to select a surgical correction based on patient-specific intra-operative assessments.

Methods

Based on a clinical series of 479 primary total knees and 1,305 associated surgical decisions, various ML models were developed. These models identified the indicated surgical decision based on available, intra-operative alignment, and tibiofemoral load data.


Bone & Joint 360
Vol. 8, Issue 4 | Pages 42 - 44
1 Aug 2019


Bone & Joint 360
Vol. 8, Issue 1 | Pages 34 - 36
1 Feb 2019