Aims. The effects of remnant preservation on the anterior cruciate ligament (ACL) and its relationship with the
This study investigated the biomechanical performance of decellularized porcine superflexor tendon (pSFT) grafts of varying diameters when utilized in conjunction with contemporary ACL graft fixation systems. This aimed to produce a range of ‘off-the-shelf’ products with predictable mechanical performance, depending on the individual requirements of the patient. Decellularized pSFTs were prepared to create double-bundle grafts of 7 mm, 8 mm, and 9 mm diameter. Femoral and tibial fixation systems were simulated utilizing Arthrex suspension devices and interference screws in bovine bone, respectively. Dynamic stiffness and creep were measured, followed by ramp to failure from which linear stiffness and load at failure were measured. The mechanisms of failure were also recorded.Objectives
Methods
Aims. To test the hypothesis that reseeded anterior cruciate ligament (ACL)-derived cells have a better ability to survive and integrate into tendon extracellular matrix (ECM) and accelerate the ligamentization process, compared to adipose-derived mesenchymal stem cells (ADMSCs). Methods. Acellularized tibialis allograft tendons were used. Tendons were randomly reseeded with ACL-derived cells or ADMSCs. ACL-derived cells were harvested and isolated from remnants of ruptured ACLs during reconstruction surgery and cultured at passage three. Cell suspensions (200 µl) containing 2 × 10. 6. ACL-derived cells or ADMSCs were prepared for the purpose of reseeding. At days 1, 3, and 7 post-reseeding, graft composites were assessed for repopulation with histological and immunohistochemical analysis. Matrix protein contents and gene expression levels were analyzed. Results. In the graft reseeded with ACL-derived cells, a large number of elongated cells that integrated into the matrix were evident at day 3 and day 7. However, in the graft reseeded with ADMSCs, only a small number of elongated cells were found integrated into the matrix. Immunofluorescence for Ki-67 and type I collagen confirmed the pronounced production of type I collagen by Ki-67-positive ACL-derived cells integrated into the ECM. A messenger RNA (mRNA) expression assay demonstrated significantly higher gene expression levels of types I (p = 0.013) and III (p = 0.050) collagen in the composites reseeded with ACL-derived cells than ADMSCs. Conclusion. ACL-derived cells, when reseeded to acellularized
Orthopaedic surgery requires grafts with sufficient mechanical strength. For this purpose, decellularized tissue is an available option that lacks the complications of autologous tissue. However, it is not widely used in orthopaedic surgeries. This study investigated clinical trials of the use of decellularized tissue grafts in orthopaedic surgery. Using the ClinicalTrials.gov (CTG) and the International Clinical Trials Registry Platform (ICTRP) databases, we comprehensively surveyed clinical trials of decellularized tissue use in orthopaedic surgeries registered before 1 September 2022. We evaluated the clinical results, tissue processing methods, and commercial availability of the identified products using academic literature databases and manufacturers’ websites.Aims
Methods
To verify whether secretory leucocyte protease inhibitor (SLPI) can promote early tendon-to-bone healing after anterior cruciate ligament (ACL) reconstruction. In vitro: the mobility of the rat bone mesenchymal stem cells (BMSCs) treated with SLPI was evaluated by scratch assay. Then the expression levels of osteogenic differentiation-related genes were analyzed by real-time quantitative PCR (qPCR) to determine the osteogenic effect of SLPI on BMSCs. In vivo: a rat model of ACL reconstruction was used to verify the effect of SLPI on tendon-to-bone healing. All the animals of the SLPI group and the negative control (NC) group were euthanized for histological evaluation, micro-CT scanning, and biomechanical testing.Aims
Methods
Wrist arthroscopy is a standard procedure in hand surgery for diagnosis and treatment of wrist injuries. Even though not generally recommended for similar procedures, general administration of perioperative antibiotic prophylaxis (PAP) is still widely used in wrist arthroscopy. A clinical ambispective dual-centre study was performed to determine whether PAP reduces postoperative infection rates after soft tissue-only wrist arthroscopies. Retrospective and prospective data was collected at two hospitals with departments specialized in hand surgery. During the study period, 464 wrist arthroscopies were performed, of these 178 soft-tissue-only interventions met the study criteria and were included. Signs of postoperative infection and possible adverse drug effects (ADEs) of PAP were monitored. Additionally, risk factors for surgical site infection (SSIs), such as diabetes mellitus and BMI, were obtained.Aims
Methods
The aim of this study was to compare the preinjury functional scores with the postinjury preoperative score and postoperative outcome scores following anterior cruciate ligament (ACL) reconstruction surgery (ACLR). We performed a prospective study on patients who underwent primary ACLR by a single surgeon at a single centre between October 2010 and January 2018. Preoperative preinjury scores were collected at time of first assessment after the index injury. Preoperative (pre- and post-injury), one-year, and two-year postoperative functional outcomes were assessed by using the Knee injury and Osteoarthritis Outcome Score (KOOS), Lysholm Knee Score, and Tegner Activity Scale.Aims
Methods
MRI has been suggested as an objective method of assessing anterior crucate ligament (ACL) graft “ligamentization” after reconstruction. It has been proposed that the MRI appearances could be used as an indicator of graft maturity and used as part of a return-to-sport assessment. The aim of this study was to evaluate the correlation between MRI graft signal and postoperative functional scores, anterior knee laxity, and patient age at operation. A consecutive cohort of 149 patients who had undergone semitendinosus autograft ACL reconstruction, using femoral and tibial adjustable loop fixations, were evaluated retrospectively postoperatively at two years. All underwent MRI analysis of the ACL graft, performed using signal-to-noise quotient (SNQ) and the Howell score. Functional outcome scores (Lysholm, Tegner, International Knee Documentation Committee (IKDC) subjective, and IKDC objective) were obtained and all patients underwent instrumented side-to-side anterior laxity differential laxity testing.Aims
Methods
To evaluate graft healing of decellularized porcine superflexor tendon (pSFT) xenograft in an ovine anterior cruciate ligament (ACL) reconstruction model using two femoral fixation devices. Also, to determine if pSFT allows functional recovery of gait as compared with the preoperative measurements. A total of 12 sheep underwent unilateral single-bundle ACL reconstruction using pSFT. Two femoral fixation devices were investigated: Group 1 (n = 6) used cortical suspensory fixation (Endobutton CL) and Group 2 (n = 6) used cross-pin fixation (Stratis ST). A soft screw was used for tibial fixation. Functional recovery was quantified using force plate analysis at weeks 5, 8, and 11. The sheep were euthanized after 12 weeks and comprehensive histological analysis characterized graft healing at the graft-bone interface and the intra-articular graft (ligamentization).Aims
Methods
Proliferation, migration, and differentiation of anterior cruciate ligament (ACL) remnant and surrounding cells are fundamental processes for ACL reconstruction; however, the interaction between ACL remnant and surrounding cells is unclear. We hypothesized that ACL remnant cells preserve the capability to regulate the surrounding cells’ activity, collagen gene expression, and tenogenic differentiation. Moreover, extracorporeal shock wave (ESW) would not only promote activity of ACL remnant cells, but also enhance their paracrine regulation of surrounding cells. Cell viability, proliferation, migration, and expression levels of Collagen-I (COL-I) A1, transforming growth factor beta (TGF-β), and vascular endothelial growth factor (VEGF) were compared between ACL remnant cells untreated and treated with ESW (0.15 mJ/mm2, 1,000 impulses, 4 Hz). To evaluate the subsequent effects on the surrounding cells, bone marrow stromal cells (BMSCs)’ viability, proliferation, migration, and levels of Type I Collagen, Type III Collagen, and tenogenic gene (Aims
Methods
Re-rupture is common after primary flexor tendon repair. Characterization of the biological changes in the ruptured tendon stumps would be helpful, not only to understand the biological responses to the failed tendon repair, but also to investigate if the tendon stumps could be used as a recycling biomaterial for tendon regeneration in the secondary grafting surgery. A canine flexor tendon repair and failure model was used. Following six weeks of repair failure, the tendon stumps were analyzed and characterized as isolated tendon-derived stem cells (TDSCs).Objectives
Methods
The present study describes a novel technique for revitalising allogenic intrasynovial tendons by combining cell-based therapy and mechanical stimulation in an Specifically, canine flexor digitorum profundus tendons were used for this study and were divided into the following groups: (1) untreated, unprocessed normal tendon; (2) decellularised tendon; (3) bone marrow stromal cell (BMSC)-seeded tendon; and (4) BMSC-seeded and cyclically stretched tendon. Lateral slits were introduced on the tendon to facilitate cell seeding. Tendons from all four study groups were distracted by a servohydraulic testing machine. Tensile force and displacement data were continuously recorded at a sample rate of 20 Hz until 200 Newton of force was reached. Before testing, the cross-sectional dimensions of each tendon were measured with a digital caliper. Young’s modulus was calculated from the slope of the linear region of the stress-strain curve. The BMSCs were labeled for histological and cell viability evaluation on the decellularized tendon scaffold under a confocal microscope. Gene expression levels of selected extracellular matrix tendon growth factor genes were measured. Results were reported as mean ± SD and data was analyzed with one-way ANOVAs followed by Tukey’s post hoc multiple-comparison test.Objectives
Methods
To compare the effect of femoral bone tunnel configuration on tendon-bone healing in an anterior cruciate ligament (ACL) reconstruction animal model. Anterior cruciate ligament reconstruction using the plantaris tendon as graft material was performed on both knees of 24 rabbits (48 knees) to mimic ACL reconstruction by two different suspensory fixation devices for graft fixation. For the adjustable fixation device model (Socket group; group S), a 5 mm deep socket was created in the lateral femoral condyle (LFC) of the right knee. For the fixed-loop model (Tunnel group; group T), a femoral tunnel penetrating the LFC was created in the left knee. Animals were sacrificed at four and eight weeks after surgery for histological evaluation and biomechanical testing.Objectives
Methods
The incidence of acute Achilles tendon rupture appears to be increasing. The aim of this study was to summarize various therapies for acute Achilles tendon rupture and discuss their relative merits. A PubMed search about the management of acute Achilles tendon rupture was performed. The search was open for original manuscripts and review papers limited to publication from January 2006 to July 2017. A total of 489 papers were identified initially and finally 323 articles were suitable for this review.Objectives
Methods
The purpose of this study was to evaluate chronological changes
in the collagen-type composition at tendon–bone interface during
tendon–bone healing and to clarify the continuity between Sharpey-like
fibres and inner fibres of the tendon. Male white rabbits were used to create an extra-articular bone–tendon
graft model by grafting the extensor digitorum longus into a bone
tunnel. Three rabbits were killed at two, four, eight, 12 and 26
weeks post-operatively. Elastica van Gieson staining was used to colour
5 µm coronal sections, which were examined under optical and polarised
light microscopy. Immunostaining for type I, II and III collagen
was also performed.Objectives
Methods
Recently, the field of tissue engineering has made numerous advances towards achieving artificial tendon substitutes with excellent mechanical and histological properties, and has had some promising experimental results. The purpose of this systematic review is to assess the efficacy of tissue engineering in the treatment of tendon injuries. We searched MEDLINE, Embase, and the Cochrane Library for the time period 1999 to 2016 for trials investigating tissue engineering used to improve tendon healing in animal models. The studies were screened for inclusion based on randomization, controls, and reported measurable outcomes. The RevMan software package was used for the meta-analysis.Objectives
Methods