Advertisement for orthosearch.org.uk
Results 1 - 20 of 253
Results per page:
Bone & Joint 360
Vol. 8, Issue 4 | Pages 22 - 23
1 Aug 2019


Bone & Joint 360
Vol. 8, Issue 2 | Pages 20 - 21
1 Apr 2019


Bone & Joint 360
Vol. 8, Issue 3 | Pages 18 - 19
1 Jun 2019


Bone & Joint 360
Vol. 8, Issue 5 | Pages 20 - 21
1 Oct 2019


Bone & Joint 360
Vol. 8, Issue 1 | Pages 17 - 18
1 Feb 2019


Bone & Joint 360
Vol. 7, Issue 6 | Pages 18 - 21
1 Dec 2018


The Bone & Joint Journal
Vol. 102-B, Issue 6 | Pages 661 - 663
1 Jun 2020
Meek RMD Treacy R Manktelow A Timperley JA Haddad FS

In this review, we discuss the evidence for patients returning to sport after hip arthroplasty. This includes the choices regarding level of sporting activity and revision or complications, the type of implant, fixation and techniques of implantation, and how these choices relate to health economics. It is apparent that despite its success over six decades, hip arthroplasty has now evolved to accommodate and support ever-increasing patient demands and may therefore face new challenges.

Cite this article: Bone Joint J 2020;102-B(6):661–663.


Bone & Joint Open
Vol. 2, Issue 1 | Pages 66 - 71
27 Jan 2020
Moriarty P Kayani B Wallace C Chang J Plastow R Haddad FS

Aims

Graft infection following anterior cruciate ligament reconstruction (ACLR) may lead to septic arthritis requiring multiple irrigation and debridement procedures, staged revision operations, and prolonged courses of antibiotics. To our knowledge, there are no previous studies reporting on how gentamicin pre-soaking of hamstring grafts influences infection rates following ACLR. We set out to examine this in our study accordingly.

Methods

This retrospective study included 2,000 patients (1,156 males and 844 females) who underwent primary ACLR with hamstring autografts between 2007 to 2017. This included 1,063 patients who received pre-soaked saline hamstring grafts for ACLR followed by 937 patients who received pre-soaked gentamicin hamstring grafts for ACLR. All operative procedures were completed by a single surgeon using a standardized surgical technique. Medical notes were reviewed and data relating to the following outcomes recorded: postoperative infection, clinical progress, causative organisms, management received, and outcomes.


Bone & Joint Open
Vol. 3, Issue 3 | Pages 245 - 251
16 Mar 2022
Lester D Barber C Sowers CB Cyrus JW Vap AR Golladay GJ Patel NK

Aims. Return to sport following undergoing total (TKA) and unicompartmental knee arthroplasty (UKA) has been researched with meta-analyses and systematic reviews of varying quality. The aim of this study is to create an umbrella review to consolidate the data into consensus guidelines for returning to sports following TKA and UKA. Methods. Systematic reviews and meta-analyses written between 2010 and 2020 were systematically searched. Studies were independently screened by two reviewers and methodology quality was assessed. Variables for analysis included objective classification of which sports are safe to participate in postoperatively, time to return to sport, prognostic indicators of returning, and reasons patients do not. Results. A total of 410 articles were found, including 58 duplicates. Seven articles meeting inclusion criteria reported that 34% to 100% of patients who underwent TKA or UKA were able to return to sports at 13 weeks and 12 weeks respectively, with UKA patients more likely to do so. Prior experience with the sport was the most significant prognostic indicator for return. These patients were likely to participate in low-impact sports, particularly walking, cycling, golf, and swimming. Moderate-impact sport participation, such as doubles tennis and skiing, may be considered on a case-by-case basis considering the patient’s prior experience. There is insufficient long-term data on the risks to return to high-impact sport, such as decreased implant survivorship. Conclusion. There is a consensus that patients can return to low-impact sports following TKA or UKA. Return to moderate-impact sport was dependent on a case-by-case basis, with emphasis on the patient’s prior experience in the sport. Return to high-impact sports was not supported. Patients undergoing UKA return to sport one week sooner and with more success than TKA. Future studies are needed to assess long-term outcomes following return to high-impact sports to establish evidence-based recommendations. This review summarizes all available data for the most up-to-date and evidence-based guidelines for returning to sport following TKA and UKA to replace guidelines based on subjective physician survey data. Cite this article: Bone Jt Open 2022;3(3):245–251


Bone & Joint Open
Vol. 4, Issue 10 | Pages 758 - 765
12 Oct 2023
Wagener N Löchel J Hipfl C Perka C Hardt S Leopold VJ

Aims. Psychological status may be an important predictor of outcome after periacetabular osteotomy (PAO). The aim of this study was to investigate the influence of psychological distress on postoperative health-related quality of life, joint function, self-assessed pain, and sports ability in patients undergoing PAO. Methods. In all, 202 consecutive patients who underwent PAO for developmental dysplasia of the hip (DDH) at our institution from 2015 to 2017 were included and followed up at 63 months (SD 10) postoperatively. Of these, 101 with complete data sets entered final analysis. Patients were assessed by questionnaire. Psychological status was measured by Brief Symptom Inventory (BSI-18), health-related quality of life was raised with 36-Item Short Form Survey (SF-36), hip functionality was measured by the short version 0f the International Hip Outcome Tool (iHOT-12), Subjective Hip Value (SHV), and Hip Disability and Outcome Score (HOS). Surgery satisfaction and pain were assessed. Dependent variables (endpoints) were postoperative quality of life (SF-36, HOS quality of life (QoL)), joint function (iHOT-12, SHV, HOS), patient satisfaction, and pain. Psychological distress was assessed by the Global Severity Index (GSI), somatization (BSI Soma), depression (BSI Depr), and anxiety (BSI Anx). Influence of psychological status was assessed by means of univariate and multiple multivariate regression analysis. Results. In multiple multivariate regression, postoperative GSI, BSI Soma, and BSI Depr had a negative effect on postoperative SF-36 (e -2.07, -3.05, and -2.67, respectively; p < 0.001), iHOT-12 (e -1.35 and -4.65, respectively; p < 0.001), SHV (e -1.20 and -2.71, respectively; p < 0.001), HOS QoL (e -2.09 and -4.79, respectively; p < 0.001), HOS Function (e -1.00 and -3.94, respectively; p < 0.001), and HOS Sport (e -1.44 and -5.29, respectively; p < 0.001), and had an effect on postoperative pain (e 0.13 and 0.37, respectively; p < 0.001). Conclusion. Psychological distress, depression, and somatization disorders affect health-related quality of life, perceived joint function, and sports ability. Pain perception is significantly increased by somatization. However, patient satisfaction with surgery is not affected. Cite this article: Bone Jt Open 2023;4(10):758–765


Aims. The aim of this study was to compare the preinjury functional scores with the postinjury preoperative score and postoperative outcome scores following anterior cruciate ligament (ACL) reconstruction surgery (ACLR). Methods. We performed a prospective study on patients who underwent primary ACLR by a single surgeon at a single centre between October 2010 and January 2018. Preoperative preinjury scores were collected at time of first assessment after the index injury. Preoperative (pre- and post-injury), one-year, and two-year postoperative functional outcomes were assessed by using the Knee injury and Osteoarthritis Outcome Score (KOOS), Lysholm Knee Score, and Tegner Activity Scale. Results. We enrolled 308 males and 263 females of mean age 27 years (19 to 46). The mean preinjury and preoperative post-injury Lysholm Knee Scores were 94 (73 to 100) and 63 (25 to 85), respectively, while the respective mean scores at one and two years postoperatively were 84 (71 to 100) and 89 (71 to 100; p < 0.001). The mean Tegner preinjury and preoperative post-injury scores were 7 (3 to 9) and 3 (0 to 6), respectively, while the respective mean scores at one and two years postoperatively were 6 (1 to 8) and 6 (1 to 9) (p < 0.001). The mean KOOS scores at preinjury versus two years postoperatively were: symptoms (96 vs 84); pain (94 vs 87); activities of daily living (97 vs 91), sports and recreation function (84 vs 71), and quality of life (82 vs 69), respectively (p < 0.001). Conclusion. Functional scores improved following ACLR surgery at two years in comparison to preoperative post-injury scores. However, at two-year follow-up, the majority of patients failed to achieve their preinjury scores. The evaluation of ACLR outcomes needs to consider the preinjury scores rather than the immediate preoperative score that is usually collected. Cite this article: Bone Jt Open 2023;4(1):46–52


Bone & Joint Open
Vol. 5, Issue 1 | Pages 69 - 77
25 Jan 2024
Achten J Appelbe D Spoors L Peckham N Kandiyali R Mason J Ferguson D Wright J Wilson N Preston J Moscrop A Costa M Perry DC

Aims. The management of fractures of the medial epicondyle is one of the greatest controversies in paediatric fracture care, with uncertainty concerning the need for surgery. The British Society of Children’s Orthopaedic Surgery prioritized this as their most important research question in paediatric trauma. This is the protocol for a randomized controlled, multicentre, prospective superiority trial of operative fixation versus nonoperative treatment for displaced medial epicondyle fractures: the Surgery or Cast of the EpicoNdyle in Children’s Elbows (SCIENCE) trial. Methods. Children aged seven to 15 years old inclusive, who have sustained a displaced fracture of the medial epicondyle, are eligible to take part. Baseline function using the Patient-Reported Outcomes Measurement Information System (PROMIS) upper limb score, pain measured using the Wong Baker FACES pain scale, and quality of life (QoL) assessed with the EuroQol five-dimension questionnaire for younger patients (EQ-5D-Y) will be collected. Each patient will be randomly allocated (1:1, stratified using a minimization algorithm by centre and initial elbow dislocation status (i.e. dislocated or not-dislocated at presentation to the emergency department)) to either a regimen of the operative fixation or non-surgical treatment. Outcomes. At six weeks, and three, six, and 12 months, data on function, pain, sports/music participation, QoL, immobilization, and analgesia will be collected. These will also be repeated annually until the child reaches the age of 16 years. Four weeks after injury, the main outcomes plus data on complications, resource use, and school absence will be collected. The primary outcome is the PROMIS upper limb score at 12 months post-randomization. All data will be obtained through electronic questionnaires completed by the participants and/or parents/guardians. The NHS number of participants will be stored to enable future data linkage to sources of routinely collected data (i.e. Hospital Episode Statistics). Cite this article: Bone Jt Open 2024;5(1):69–77


Bone & Joint Research
Vol. 12, Issue 1 | Pages 22 - 32
11 Jan 2023
Boschung A Faulhaber S Kiapour A Kim Y Novais EN Steppacher SD Tannast M Lerch TD

Aims. Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients. Methods. A retrospective study involving 24 patients (37 hips) with FAI and femoral retroversion (femoral version (FV) < 5° per Murphy method) was performed. All patients were symptomatic (mean age 28 years (SD 9)) and had anterior hip/groin pain and a positive anterior impingement test. Cam- and pincer-type subgroups were analyzed. Patients were compared to an asymptomatic control group (26 hips). All patients underwent pelvic CT scans to generate personalized CT-based 3D models and validated software for patient-specific impingement simulation (equidistant method). Results. Mean impingement-free flexion of patients with mixed-type FAI (110° (SD 8°)) and patients with pincer-type FAI (112° (SD 8°)) was significantly (p < 0.001) lower compared to the control group (125° (SD 13°)). The frequency of extra-articular subspine impingement was significantly (p < 0.001) increased in patients with pincer-type FAI (57%) compared to cam-type FAI (22%) in 125° flexion. Bony impingement in maximal flexion was located anterior-inferior at femoral four and five o’clock position in patients with cam-type FAI (63% (10 of 16 hips) and 37% (6 of 10 hips)), and did not involve the cam deformity. The cam deformity did not cause impingement in maximal flexion. Conclusion. Femoral impingement in maximal flexion was located anterior-inferior distal to the cam deformity. This differs to previous studies, a finding which could be important for FAI patients in order to avoid exacerbation of hip pain in deep flexion (e.g. during squats) and for hip arthroscopy (hip-preservation surgery) for planning of bone resection. Hip impingement in flexion has implications for daily activities (e.g. putting on shoes), sports, and sex. Cite this article: Bone Joint Res 2023;12(1):22–32


Bone & Joint Research
Vol. 13, Issue 11 | Pages 647 - 658
12 Nov 2024
Li K Zhang Q

Aims. The incidence of limb fractures in patients living with HIV (PLWH) is increasing. However, due to their immunodeficiency status, the operation and rehabilitation of these patients present unique challenges. Currently, it is urgent to establish a standardized perioperative rehabilitation plan based on the concept of enhanced recovery after surgery (ERAS). This study aimed to validate the effectiveness of ERAS in the perioperative period of PLWH with limb fractures. Methods. A total of 120 PLWH with limb fractures, between January 2015 and December 2023, were included in this study. We established a multidisciplinary team to design and implement a standardized ERAS protocol. The demographic, surgical, clinical, and follow-up information of the patients were collected and analyzed retrospectively. Results. Compared with the control group, the ERAS group had a shorter operating time, hospital stay, preoperative waiting time, postoperative discharge time, less intraoperative blood loss, and higher albumin and haemoglobin on the first postoperative day. The time to removal of the urinary catheter/drainage tube was shortened, and the drainage volume was also significantly reduced in the ERAS group. There was no significant difference in the visual analogue scale (VAS) scores on postoperative return to the ward, but the ERAS group had lower scores on the first, second, and third postoperative days. There were no significant differences in the incidence of complications, other than 10% more nausea and vomiting in the control group. The limb function scores at one-year follow-up were similar between the two groups, but time to radiological fracture union and time to return to physical work and sports were significantly reduced in the ERAS group. Conclusion. The implementation of a series of perioperative nursing measures based on the concept of ERAS in PLWH with limb fracture can significantly reduce the operating time and intraoperative blood loss, reduce the occurrence of postoperative pain and complications, and accelerate the improvement of the functional status of the affected limb in the early stage, which is worthy of applying in more medical institutions. Cite this article: Bone Joint Res 2024;13(11):647–658


Bone & Joint Open
Vol. 4, Issue 3 | Pages 158 - 167
10 Mar 2023
Landers S Hely R Hely A Harrison B Page RS Maister N Gwini SM Gill SD

Aims. This study investigated the effects of transcatheter arterial embolization (TAE) on pain, function, and quality of life in people with early-stage symptomatic knee osteoarthritis (OA) compared to a sham procedure. Methods. A total of 59 participants with symptomatic Kellgren-Lawrence grade 2 knee OA were randomly allocated to TAE or a sham procedure. The intervention group underwent TAE of one or more genicular arteries. The control group received a blinded sham procedure. The primary outcome was knee pain at 12 months according to the Knee injury and Osteoarthritis Outcome Score (KOOS) pain scale. Secondary outcomes included self-reported function and quality of life (KOOS, EuroQol five-dimension five-level questionnaire (EQ-5D-5L)), self-reported Global Change, six-minute walk test, 30-second chair stand test, and adverse events. Subgroup analyses compared participants who received complete embolization of all genicular arteries (as distinct from embolization of some arteries) (n = 17) with the control group (n = 29) for KOOS and Global Change scores at 12 months. Continuous variables were analyzed with quantile regression, adjusting for baseline scores. Dichotomized variables were analyzed with chi-squared tests. Results. Overall, 58 participants provided questionnaire data at 12 months. No significant differences were found for the primary and secondary outcomes, with both groups improving following the procedure. At 12 months, KOOS pain scores improved by 41.3% and 29.4% in the intervention and control groups, respectively. No adverse events occurred. Subgroup analysis indicated that the complete embolization group had significantly better KOOS Sports and Recreation, KOOS Quality of Life, and Global Change scores than the control group; 76.5% of participants who received complete embolization reporting being moderately or much better compared to 37.9% of the control group. Conclusion. TAE might produce benefits above placebo, but only when complete embolization of all genicular arteries is performed. Further comparative studies are required before definitive conclusions regarding the effectiveness of TAE can be made. Level of evidence: I. Cite this article: Bone Jt Open 2023;4(3):158–167


Bone & Joint Open
Vol. 3, Issue 11 | Pages 894 - 897
15 Nov 2022
Makaram NS Murray IR Geeslin AG Chahla J LaPrade RF

Aims. Multiligament knee injuries (MLKI) are devastating injuries that can result in significant morbidity and time away from sport. There remains considerable variation in strategies employed for investigation, indications for operative intervention, outcome reporting, and rehabilitation following these injuries. At present no study has yet provided a comprehensive overview evaluating the extent, range, and overall summary of the published literature pertaining to MLKI. Our aim is to perform a methodologically rigorous scoping review, mapping the literature evaluating the diagnosis and management of MLKI. Methods. This scoping review will address three aims: firstly, to map the current extent and nature of evidence for diagnosis and management of MLKI; secondly, to summarize and disseminate existing research findings to practitioners; and thirdly, to highlight gaps in current literature. A three-step search strategy as described by accepted methodology will be employed to identify peer-reviewed literature including reviews, technical notes, opinion pieces, and original research. An initial limited search will be performed to determine suitable search terms, followed by an expanded search of four electronic databases (MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, and Web of Science). Two reviewers will independently screen identified studies for final inclusion. Dissemination. We will map key concepts and evidence, and disseminate existing research findings to the wider orthopaedic and sports medicine community, through both peer-reviewed and non-peer-reviewed literature, and conference and in-person communications. We will highlight gaps in the current literature and determine future priorities for further research. Cite this article: Bone Jt Open 2022;3(11):894–897


Bone & Joint Open
Vol. 5, Issue 11 | Pages 984 - 991
6 Nov 2024
Molloy T Gompels B McDonnell S

Aims. This Delphi study assessed the challenges of diagnosing soft-tissue knee injuries (STKIs) in acute settings among orthopaedic healthcare stakeholders. Methods. This modified e-Delphi study consisted of three rounds and involved 32 orthopaedic healthcare stakeholders, including physiotherapists, emergency nurse practitioners, sports medicine physicians, radiologists, orthopaedic registrars, and orthopaedic consultants. The perceived importance of diagnostic components relevant to STKIs included patient and external risk factors, clinical signs and symptoms, special clinical tests, and diagnostic imaging methods. Each round required scoring and ranking various items on a ten-point Likert scale. The items were refined as each round progressed. The study produced rankings of perceived importance across the various diagnostic components. Results. In Round 1, the study revealed widespread variability in stakeholder opinions on diagnostic components of STKIs. Round 2 identified patterns in the perceived importance of specific items within each diagnostic component. Round 3 produced rankings of perceived item importance within each diagnostic component. Noteworthy findings include the challenges associated with accurate and readily available diagnostic methods in acute care settings, the consistent acknowledgment of the importance of adopting a patient-centred approach to diagnosis, and the transition from divergent to convergent opinions between Rounds 2 and 3. Conclusion. This study highlights the potential for a paradigm shift in acute STKI diagnosis, where variability in the understanding of STKI diagnostic components may be addressed by establishing a uniform, evidence-based framework for evaluating these injuries. Cite this article: Bone Jt Open 2024;5(11):984–991


Bone & Joint Open
Vol. 3, Issue 6 | Pages 448 - 454
6 Jun 2022
Korup LR Larsen P Nanthan KR Arildsen M Warming N Sørensen S Rahbek O Elsoe R

Aims. The aim of this study was to report a complete overview of both incidence, fracture distribution, mode of injury, and patient baseline demographics of paediatric distal forearm fractures to identify age of risk and types of activities leading to injury. Methods. Population-based cohort study with manual review of radiographs and charts. The primary outcome measure was incidence of paediatric distal forearm fractures. The study was based on an average at-risk population of 116,950. A total number of 4,316 patients sustained a distal forearm fracture in the study period. Females accounted for 1,910 of the fractures (44%) and males accounted for 2,406 (56%). Results. The overall incidence of paediatric distal forearm fractures was 738.1/100,000 persons/year (95% confidence interval (CI) 706/100,000 to 770/100,000). Female incidences peaked with an incidence of 1,578.3/100,000 persons/year at age ten years. Male incidence peaked at age 13 years, with an incidence of 1,704.3/100,000 persons/year. The most common fracture type was a greenstick fracture to the radius (48%), and the most common modes of injury were sports and falls from ≤ 1 m. A small year-to-year variation was reported during the five-year study period, but without any trends. Conclusion. Results show that paediatric distal forearm fractures are very common throughout childhood in both sexes, with almost 2% of males aged 13 years sustaining a forearm fracture each year. Cite this article: Bone Jt Open 2022;3(6):448–454


Bone & Joint Open
Vol. 5, Issue 11 | Pages 1003 - 1012
8 Nov 2024
Gabr A Fontalis A Robinson J Hage W O'Leary S Spalding T Haddad FS

Aims. The aim of this study was to compare patient-reported outcomes (PROMs) following isolated anterior cruciate ligament reconstruction (ACLR), with those following ACLR and concomitant meniscal resection or repair. Methods. We reviewed prospectively collected data from the UK National Ligament Registry for patients who underwent primary ACLR between January 2013 and December 2022. Patients were categorized into five groups: isolated ACLR, ACLR with medial meniscus (MM) repair, ACLR with MM resection, ACLR with lateral meniscus (LM) repair, and ACLR with LM resection. Linear regression analysis, with isolated ACLR as the reference, was performed after adjusting for confounders. Results. From 14,895 ACLR patients, 4,400 had two- or five-year Knee injury and Osteoarthritis Outcome Scores (KOOS) available. At two years postoperatively, the MM repair group demonstrated inferior scores in KOOS pain (β = −3.63, p < 0.001), symptoms (β = − 4.88, p < 0.001), ADL (β = − 2.43, p = 0.002), sport and recreation (β = − 5.23, p < 0.001), quality of life (QoL) (β = − 5.73, p < 0.001), and International Knee Documentation Committee (β = − 4.1, p < 0.001) compared with the isolated ACLR group. The LM repair group was associated with worse KOOS sports and recreation scores at two years (β = − 4.264, p < 0.001). At five years, PROMs were comparable between the groups. At five years, PROMs were comparable between the groups. Participants undergoing ACLR surgery within 12 weeks from index injury demonstrated superior PROMs at two and five years. Conclusion. Our study showed that MM repair, and to a lesser extent LM repairs in combination with ACLR, were associated with inferior patient-reported outcome measures (PROMs) compared to isolated ACLR at two years postoperatively, while meniscal resection groups exhibited comparable outcomes. However, by five years postoperation, no significant differences in PROMs were evident. Further longer-term, cross-sectional studies are warranted to investigate the outcomes of ACLR and concomitant meniscal surgery


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 880 - 887
1 Aug 2023
Onodera T Momma D Matsuoka M Kondo E Suzuki K Inoue M Higano M Iwasaki N

Aims. Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury. Methods. A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.0 to 4.0 cm. 2. ) were included in this study. UPAL gel was implanted into chondral defects after performing bone marrow stimulation technique, and assessed for up to three years postoperatively. The primary outcomes were the feasibility and safety of the procedure. The secondary outcomes were self-assessed clinical scores, arthroscopic scores, tissue biopsies, and MRI-based estimations. Results. No obvious adverse events related to UPAL gel implantation were observed. Self-assessed clinical scores, including pain, symptoms, activities of daily living, sports activity, and quality of life, were improved significantly at three years after surgery. Defect filling was confirmed using second-look arthroscopy at 72 weeks. Significantly improved MRI scores were observed from 12 to 144 weeks postoperatively. Histological examination of biopsy specimens obtained at 72 weeks after implantation revealed an extracellular matrix rich in glycosaminoglycan and type II collagen in the reparative tissue. Histological assessment yielded a mean overall International Cartilage Regeneration & Joint Preservation Society II score of 69.1 points (SD 10.4; 50 to 80). Conclusion. This study provides evidence supporting the safety of acellular UPAL gel implantation in facilitating cartilage repair. Despite being a single-arm study, it demonstrated the efficacy of UPAL gel implantation, suggesting it is an easy-to-use, one-step method of cartilage tissue repair circumventing the need to harvest donor cells. Cite this article: Bone Joint J 2023;105-B(8):880–887