Advertisement for orthosearch.org.uk
Results 1 - 20 of 154
Results per page:
Bone & Joint Research
Vol. 7, Issue 1 | Pages 46 - 57
1 Jan 2018
Zhou J Zhou XG Wang JW Zhou H Dong J

Objective. In the present study, we aimed to assess whether gelatin/β-tricalcium phosphate (β-TCP) composite porous scaffolds could be used as a local controlled release system for vancomycin. We also investigated the efficiency of the scaffolds in eliminating infections and repairing osteomyelitis defects in rabbits. Methods. The gelatin scaffolds containing differing amounts of of β-TCP (0%, 10%, 30% and 50%) were prepared for controlled release of vancomycin and were labelled G-TCP0, G-TCP1, G-TCP3 and G-TCP5, respectively. The Kirby-Bauer method was used to examine the release profile. Chronic osteomyelitis models of rabbits were established. After thorough debridement, the osteomyelitis defects were implanted with the scaffolds. Radiographs and histological examinations were carried out to investigate the efficiency of eliminating infections and repairing bone defects. Results. The prepared gelatin/β-TCP scaffolds exhibited a homogeneously interconnected 3D porous structure. The G-TCP0 scaffold exhibited the longest duration of vancomycin release with a release duration of eight weeks. With the increase of β-TCP contents, the release duration of the β-TCP-containing composite scaffolds was decreased. The complete release of vancomycin from the G-TCP5 scaffold was achieved within three weeks. In the treatment of osteomyelitis defects in rabbits, the G-TCP3 scaffold showed the most efficacious performance in eliminating infections and repairing bone defects. Conclusions. The composite scaffolds could achieve local therapeutic drug levels over an extended duration. The G-TCP3 scaffold possessed the optimal porosity, interconnection and controlled release performance. Therefore, this scaffold could potentially be used in the treatment of chronic osteomyelitis defects. Cite this article: J. Zhou, X. G. Zhou, J. W. Wang, H. Zhou, J. Dong. Treatment of osteomyelitis defects by a vancomycin-loaded gelatin/β-tricalcium phosphate composite scaffold. Bone Joint Res 2018;7:46–57. DOI: 10.1302/2046-3758.71.BJR-2017-0129.R2


Bone & Joint Research
Vol. 4, Issue 5 | Pages 70 - 77
1 May 2015
Gupta A Liberati TA Verhulst SJ Main BJ Roberts MH Potty AGR Pylawka TK El-Amin III SF

Objectives. The purpose of this study was to evaluate in vivo biocompatibility of novel single-walled carbon nanotubes (SWCNT)/poly(lactic-co-glycolic acid) (PLAGA) composites for applications in bone and tissue regeneration. Methods. A total of 60 Sprague-Dawley rats (125 g to 149 g) were implanted subcutaneously with SWCNT/PLAGA composites (10 mg SWCNT and 1gm PLAGA 12 mm diameter two-dimensional disks), and at two, four, eight and 12 weeks post-implantation were compared with control (Sham) and PLAGA (five rats per group/point in time). Rats were observed for signs of morbidity, overt toxicity, weight gain and food consumption, while haematology, urinalysis and histopathology were completed when the animals were killed. Results. No mortality and clinical signs were observed. All groups showed consistent weight gain, and the rate of gain for each group was similar. All groups exhibited a similar pattern for food consumption. No difference in urinalysis, haematology, and absolute and relative organ weight was observed. A mild to moderate increase in the summary toxicity (sumtox) score was observed for PLAGA and SWCNT/PLAGA implanted animals, whereas the control animals did not show any response. Both PLAGA and SWCNT/PLAGA showed a significantly higher sumtox score compared with the control group at all time intervals. However, there was no significant difference between PLAGA and SWCNT/PLAGA groups. Conclusions. Our results demonstrate that SWCNT/PLAGA composites exhibited in vivo biocompatibility similar to the Food and Drug Administration approved biocompatible polymer, PLAGA, over a period of 12 weeks. These results showed potential of SWCNT/PLAGA composites for bone regeneration as the low percentage of SWCNT did not elicit a localised or general overt toxicity. Following the 12-week exposure, the material was considered to have an acceptable biocompatibility to warrant further long-term and more invasive in vivo studies. Cite this article: Bone Joint Res 2015;4:70–7


Aims. The efficacy of saline irrigation for treatment of implant-associated infections is limited in the presence of porous metallic implants. This study evaluated the therapeutic efficacy of antibiotic doped bioceramic (vancomycin/tobramycin-doped polyvinyl alcohol composite (PVA-VAN/TOB-P)) after saline wash in a mouse infection model implanted with titanium cylinders. Methods. Air pouches created in female BalBc mice by subcutaneous injection of air. In the first of two independent studies, pouches were implanted with titanium cylinders (400, 700, and 100 µm pore sizes) and inoculated with Staphylococcus aureus (1 × 10. 3. or 1 × 10. 6. colony-forming units (CFU)/pouch) to establish infection and biofilm formation. Mice were killed after one week for microbiological analysis. In the second study, pouches were implanted with 400 µm titanium cylinders and inoculated with S. aureus (1 × 10. 3. or 1 × 10. 6. CFU/pouch). Four groups were tested: 1) no bacteria; 2) bacteria without saline wash; 3) saline wash only; and 4) saline wash plus PVA-VAN/TOB-P. After seven days, the pouches were opened and washed with saline alone, or had an additional injection of PVA-VAN/TOB-P. Mice were killed 14 days after pouch wash. Results. The first part of the study showed that low-grade infection was more significant in 400 µm cylinders than cylinders with larger pore sizes (p < 0.05). The second part of the study showed that saline wash alone was ineffective in eradicating both low- and high-grade infections. Saline plus PVA-VAN/TOB-P eradicated the titanium cylinder-associated infections, as manifested by negative cultures of the washouts and supported by scanning electron microscopy and histology. Conclusion. Porous titanium cylinders were vulnerable to bacterial infection and biofilm formation that could not be treated by saline irrigation alone. Application of PVA-VAN/TOB-P directly into the surgical site alone or after saline wash represents a feasible approach for prevention and/or treatment of porous implant-related infections. Cite this article: Bone Joint Res 2024;13(11):622–631


Bone & Joint Research
Vol. 4, Issue 4 | Pages 56 - 64
1 Apr 2015
Lv YM Yu QS

Objectives. The major problem with repair of an articular cartilage injury is the extensive difference in the structure and function of regenerated, compared with normal cartilage. Our work investigates the feasibility of repairing articular osteochondral defects in the canine knee joint using a composite lamellar scaffold of nano-ß-tricalcium phosphate (ß-TCP)/collagen (col) I and II with bone marrow stromal stem cells (BMSCs) and assesses its biological compatibility. Methods. The bone–cartilage scaffold was prepared as a laminated composite, using hydroxyapatite nanoparticles (nano-HAP)/collagen I/copolymer of polylactic acid–hydroxyacetic acid as the bony scaffold, and sodium hyaluronate/poly(lactic-co-glycolic acid) as the cartilaginous scaffold. Ten-to 12-month-old hybrid canines were randomly divided into an experimental group and a control group. BMSCs were obtained from the iliac crest of each animal, and only those of the third generation were used in experiments. An articular osteochondral defect was created in the right knee of dogs in both groups. Those in the experimental group were treated by implanting the composites consisting of the lamellar scaffold of ß-TCP/col I/col II/BMSCs. Those in the control group were left untreated. Results. After 12 weeks of implantation, defects in the experimental group were filled with white semi-translucent tissue, protruding slightly over the peripheral cartilage surface. After 24 weeks, the defect space in the experimental group was filled with new cartilage tissues, finely integrated into surrounding normal cartilage. The lamellar scaffold of ß-TCP/col I/col II was gradually degraded and absorbed, while new cartilage tissue formed. In the control group, the defects were not repaired. Conclusion. This method can be used as a suitable scaffold material for the tissue-engineered repair of articular cartilage defects. Cite this article: Bone Joint Res 2015;4:56–64


Bone & Joint Research
Vol. 11, Issue 11 | Pages 787 - 802
1 Nov 2022
Sebastian S Tandberg F Liu Y Raina DB Tägil M Collin M Lidgren L

Aims. There is a lack of biomaterial-based carriers for the local delivery of rifampicin (RIF), one of the cornerstone second defence antibiotics for bone infections. RIF is also known for causing rapid development of antibiotic resistance when given as monotherapy. This in vitro study evaluated a clinically used biphasic calcium sulphate/hydroxyapatite (CaS/HA) biomaterial as a carrier for dual delivery of RIF with vancomycin (VAN) or gentamicin (GEN). Methods. The CaS/HA composites containing RIF/GEN/VAN, either alone or in combination, were first prepared and their injectability, setting time, and antibiotic elution profiles were assessed. Using a continuous disk diffusion assay, the antibacterial behaviour of the material was tested on both planktonic and biofilm-embedded forms of standard and clinical strains of Staphylococcus aureus for 28 days. Development of bacterial resistance to RIF was determined by exposing the biofilm-embedded bacteria continuously to released fractions of antibiotics from CaS/HA-antibiotic composites. Results. Following the addition of RIF to CaS/HA-VAN/GEN, adequate injectability and setting of the CaS/HA composites were noted. Sustained release of RIF above the minimum inhibitory concentrations of S. aureus was observed until study endpoint (day 35). Only combinations of CaS/HA-VAN/GEN + RIF exhibited antibacterial and antibiofilm effects yielding no viable bacteria at study endpoint. The S. aureus strains developed resistance to RIF when biofilms were subjected to CaS/HA-RIF alone but not with CaS/HA-VAN/GEN + RIF. Conclusion. Our in vitro results indicate that biphasic CaS/HA loaded with VAN or GEN could be used as a carrier for RIF for local delivery in clinically demanding bone infections. Cite this article: Bone Joint Res 2022;11(11):787–802


Aims. To test the hypothesis that reseeded anterior cruciate ligament (ACL)-derived cells have a better ability to survive and integrate into tendon extracellular matrix (ECM) and accelerate the ligamentization process, compared to adipose-derived mesenchymal stem cells (ADMSCs). Methods. Acellularized tibialis allograft tendons were used. Tendons were randomly reseeded with ACL-derived cells or ADMSCs. ACL-derived cells were harvested and isolated from remnants of ruptured ACLs during reconstruction surgery and cultured at passage three. Cell suspensions (200 µl) containing 2 × 10. 6. ACL-derived cells or ADMSCs were prepared for the purpose of reseeding. At days 1, 3, and 7 post-reseeding, graft composites were assessed for repopulation with histological and immunohistochemical analysis. Matrix protein contents and gene expression levels were analyzed. Results. In the graft reseeded with ACL-derived cells, a large number of elongated cells that integrated into the matrix were evident at day 3 and day 7. However, in the graft reseeded with ADMSCs, only a small number of elongated cells were found integrated into the matrix. Immunofluorescence for Ki-67 and type I collagen confirmed the pronounced production of type I collagen by Ki-67-positive ACL-derived cells integrated into the ECM. A messenger RNA (mRNA) expression assay demonstrated significantly higher gene expression levels of types I (p = 0.013) and III (p = 0.050) collagen in the composites reseeded with ACL-derived cells than ADMSCs. Conclusion. ACL-derived cells, when reseeded to acellularized tendon graft, demonstrated earlier better survival and integration in the tendon ECM and resulted in higher gene expression levels of collagen, which may be essential to the normal ligamentization process compared to ADMSCs. Cite this article: Bone Joint Res 2022;11(11):777–786


Bone & Joint Open
Vol. 3, Issue 9 | Pages 733 - 740
21 Sep 2022
Sacchetti F Aston W Pollock R Gikas P Cuomo P Gerrand C

Aims. The proximal tibia (PT) is the anatomical site most frequently affected by primary bone tumours after the distal femur. Reconstruction of the PT remains challenging because of the poor soft-tissue cover and the need to reconstruct the extensor mechanism. Reconstructive techniques include implantation of massive endoprosthesis (megaprosthesis), osteoarticular allografts (OAs), or allograft-prosthesis composites (APCs). Methods. This was a retrospective analysis of clinical data relating to patients who underwent proximal tibial arthroplasty in our regional bone tumour centre from 2010 to 2018. Results. A total of 76 patients fulfilled the inclusion criteria and were included in the study. Mean age at surgery was 43.2 years (12 to 86 (SD 21)). The mean follow-up period was 60.1 months (5.4 to 353). In total 21 failures were identified, giving an overall failure rate of 27.6%. Prosthesis survival at five years was 75.5%, and at ten years was 59%. At last follow-up, mean knee flexion was 89.8° (SD 36°) with a mean extensor lag of 18.1° (SD 24°). In univariate analysis, factors associated with better survival of the prosthesis were a malignant or metastatic cancer diagnosis (versus benign), with a five- and ten-year survival of 78.9% and 65.7% versus 37.5% (p = 0.045), while in-hospital length of stay longer than nine days was also associated with better prognosis with five- and ten-year survival rates at 84% and 84% versus 60% and 16% (p < 0.001). In multivariate analysis, only in-hospital length of stay was associated with longer survival (hazard ratio (HR) 0.23, 95% confidence interval (CI) 0.08 to 0.66). Conclusion. We have shown that proximal tibial arthroplasty with endoprosthesis is a safe and reliable method for reconstruction in patients treated for orthopaedic oncological conditions. Either modular or custom implants in this series performed well. Cite this article: Bone Jt Open 2022;3(9):733–740


Bone & Joint Research
Vol. 8, Issue 10 | Pages 489 - 494
1 Oct 2019
Klasan A Bäumlein M Dworschak P Bliemel C Neri T Schofer MD Heyse TJ

Objectives. Periprosthetic femoral fractures (PFFs) have a higher incidence with cementless stems. The highest incidence among various cementless stem types was observed with double-wedged stems. Short stems have been introduced as a bone-preserving alternative with a higher incidence of PFF in some studies. The purpose of this study was a direct load-to-failure comparison of a double-wedged cementless stem and a short cementless stem in a cadaveric fracture model. Methods. Eight hips from four human cadaveric specimens (age mean 76 years (60 to 89)) and eight fourth-generation composite femurs were used. None of the cadaveric specimens had compromised quality (mean T value 0.4 (-1.0 to 5.7)). Each specimen from a pair randomly received either a double-wedged stem or a short stem. A materials testing machine was used for lateral load-to-failure test of up to a maximal load of 5000 N. Results. Mean load at failure of the double-wedged stem was 2540 N (1845 to 2995) and 1867 N (1135 to 2345) for the short stem (p < 0.001). All specimens showed the same fracture pattern, consistent with a Vancouver B2 fracture. The double-wedged stem was able to sustain a higher load than its short-stemmed counterpart in all cases. Failure force was not correlated to the bone mineral density (p = 0.718). Conclusion. Short stems have a significantly lower primary load at failure compared with double-wedged stems in both cadaveric and composite specimens. Surgeons should consider this biomechanical property when deciding on the use of short femoral stem. Cite this article: A. Klasan, M. Bäumlein, P. Dworschak, C. Bliemel, T. Neri, M. D. Schofer, T. J. Heyse. Short stems have lower load at failure than double-wedged stems in a cadaveric cementless fracture model. Bone Joint Res 2019;8:489–494. DOI: 10.1302/2046-3758.810.BJR-2019-0051.R1


Bone & Joint Research
Vol. 10, Issue 4 | Pages 277 - 284
1 Apr 2021
Funk GA Menuey EM Ensminger WP Kilway KV McIff TE

Aims. Poly(methyl methacrylate) (PMMA)-based bone cements are the industry standard in orthopaedics. PMMA cement has inherent disadvantages, which has led to the development and evaluation of a novel silorane-based biomaterial (SBB) for use as an orthopaedic cement. In this study we test both elution and mechanical properties of both PMMA and SBB, with and without antibiotic loading. Methods. For each cement (PMMA or SBB), three formulations were prepared (rifampin-added, vancomycin-added, and control) and made into pellets (6 mm × 12 mm) for testing. Antibiotic elution into phosphate-buffered saline was measured over 14 days. Compressive strength and modulus of all cement pellets were tested over 14 days. Results. The SBB cement was able to deliver rifampin over 14 days, while PMMA was unable to do so. SBB released more vancomycin overall than did PMMA. The mechanical properties of PMMA were significantly reduced upon rifampin incorporation, while there was no effect to the SBB cement. Vancomycin incorporation had no effect on the strength of either cement. Conclusion. SBB was found to be superior in terms of rifampin and vancomycin elution. Additionally, the incorporation of these antibiotics into SBB did not reduce the strength of the resultant SBB cement composite whereas rifampin substantially attenuates the strength of PMMA. Thus, SBB emerges as a potential weight-bearing alternative to PMMA for the local delivery of antibiotics. Cite this article: Bone Joint Res 2021;10(4):277–284


Bone & Joint Open
Vol. 2, Issue 7 | Pages 466 - 475
8 Jul 2021
Jain S Lamb J Townsend O Scott CEH Kendrick B Middleton R Jones SA Board T West R Pandit H

Aims. This study evaluates risk factors influencing fracture characteristics for postoperative periprosthetic femoral fractures (PFFs) around cemented stems in total hip arthroplasty. Methods. Data were collected for PFF patients admitted to eight UK centres between 25 May 2006 and 1 March 2020. Radiographs were assessed for Unified Classification System (UCS) grade and AO/OTA type. Statistical comparisons investigated relationships by age, gender, and stem fixation philosophy (polished taper-slip (PTS) vs composite beam (CB)). The effect of multiple variables was estimated using multinomial logistic regression to estimate odds ratios (ORs) with 95% confidence intervals (CIs). Surgical treatment (revision vs fixation) was compared by UCS grade and AO/OTA type. Results. A total of 584 cases were included. Median age was 79.1 years (interquartile range 72.0 to 86.0), 312 (53.6%) patients were female, and 495 (85.1%) stems were PTS. The commonest UCS grade was type B1 (278, 47.6%). The most common AO/OTA type was spiral (352, 60.3%). Metaphyseal split fractures occurred only with PTS stems with an incidence of 10.1%. Male sex was associated with a five-fold reduction in odds of a type C fracture (OR 0.22 (95% CI 0.12 to 0.41); p < 0.001) compared to a type B fracture. CB stems were associated with significantly increased odds of transverse fracture (OR 9.51 (95% CI 3.72 to 24.34); p < 0.001) and wedge fracture (OR 3.72 (95% CI 1.16 to 11.95); p = 0.027) compared to PTS stems. Both UCS grade and AO/OTA type differed significantly (p < 0.001 and p = 0.001, respectively) between the revision and fixation groups but a similar proportion of B1 fractures underwent revision compared to fixation (45.3% vs 50.6%). Conclusion. The commonest fracture types are B1 and spiral fractures. PTS stems are exclusively associated with metaphyseal split fractures, but their incidence is low. Males have lower odds of UCS grade C fractures compared to females. CB stems have higher odds of bending type fractures (transverse and wedge) compared to PTS stems. There is considerable variation in practice when treating B1 fractures around cemented stems. Cite this article: Bone Jt Open 2021;2(7):466–475


Bone & Joint Open
Vol. 2, Issue 1 | Pages 3 - 8
1 Jan 2021
Costa-Paz M Muscolo DL Ayerza MA Sanchez M Astoul Bonorino J Yacuzzi C Carbo L

Aims. Our purpose was to describe an unusual series of 21 patients with fungal osteomyelitis after an anterior cruciate ligament reconstruction (ACL-R). Methods. We present a case-series of consecutive patients treated at our institution due to a severe fungal osteomyelitis after an arthroscopic ACL-R from November 2005 to March 2015. Patients were referred to our institution from different areas of our country. We evaluated the amount of bone resection required, type of final reconstructive procedure performed, and Musculoskeletal Tumor Society (MSTS) functional score. Results. A total of 21 consecutive patients were included in the study; 19 were male with median age of 28 years (IQR 25 to 32). All ACL-R were performed with hamstrings autografts with different fixation techniques. An oncological-type debridement was needed to control persistent infection symptoms. There were no recurrences of fungal infection after median of four surgical debridements (IQR 3 to 6). Five patients underwent an extensive curettage due to the presence of large cavitary lesions and were reconstructed with hemicylindrical intercalary allografts (HIAs), preserving the epiphysis. An open surgical debridement was performed resecting the affected epiphysis in 15 patients, with a median bone loss of 11 cm (IQR 11.5 to 15.6). From these 15 cases, eight patients were reconstructed with allograft prosthesis composites (APC); six with tumour-type prosthesis (TTP) and one required a femoral TTP in combination with a tibial APC. One underwent an above-the-knee amputation. The median MSTS functional score was 20 points at a median of seven years (IQR 5 to 9) of follow-up. Conclusion. This study suggests that mucormycosis infection after an ACL-R is a serious complication. Diagnosis is usually delayed until major bone destructive lesions are present. This may originate additional massive reconstructive surgeries with severe functional limitations for the patients. Level of evidence: IV. Cite this article: Bone Joint Open 2020;2(1):3–8


Bone & Joint Open
Vol. 1, Issue 10 | Pages 644 - 653
14 Oct 2020
Kjærvik C Stensland E Byhring HS Gjertsen J Dybvik E Søreide O

Aims. The aim of this study was to describe variation in hip fracture treatment in Norway expressed as adherence to international and national evidence-based treatment guidelines, to study factors influencing deviation from guidelines, and to analyze consequences of non-adherence. Methods. International and national guidelines were identified and treatment recommendations extracted. All 43 hospitals routinely treating hip fractures in Norway were characterized. From the Norwegian Hip Fracture Register (NHFR), hip fracture patients aged > 65 years and operated in the period January 2014 to December 2018 for fractures with conclusive treatment guidelines were included (n = 29,613: femoral neck fractures (n = 21,325), stable trochanteric fractures (n = 5,546), inter- and subtrochanteric fractures (n = 2,742)). Adherence to treatment recommendations and a composite indicator of best practice were analyzed. Patient survival and reoperations were evaluated for each recommendation. Results. Median age of the patients was 84 (IQR 77 to 89) years and 69% (20,427/29,613) were women. Overall, 79% (23,390/29,613) were treated within 48 hours, and 80% (23,635/29,613) by a surgeon with more than three years’ experience. Adherence to guidelines varied substantially but was markedly better in 2018 than in 2014. Having a dedicated hip fracture unit (OR 1.06, 95%CI 1.01 to 1.11) and a hospital hip fracture programme (OR 1.16, 95% CI 1.06 to 1.27) increased the probability of treatment according to best practice. Surgery after 48 hours increased one-year mortality significantly (OR 1.13, 95% CI 1.05 to 1.22; p = 0.001). Alternative treatment to arthroplasty for displaced femoral neck fractures (FNFs) increased mortality after 30 days (OR 1.29, 95% CI 1.03 to 1.62)) and one year (OR 1.45, 95% CI 1.22 to 1.72), and also increased the number of reoperations (OR 4.61, 95% CI 3.73 to 5.71). An uncemented stem increased the risk of reoperation significantly (OR 1.23, 95% CI 1.02 to 1.48; p = 0.030). Conclusion. Our study demonstrates a substantial variation between hospitals in adherence to evidence-based guidelines for treatment of hip fractures in Norway. Non-adherence can be ascribed to in-hospital factors. Poor adherence has significant negative consequences for patients in the form of increased mortality rates at 30 and 365 days post-treatment and in reoperation rates. Cite this article: Bone Joint Open 2020;1-10:644–653


Bone & Joint Research
Vol. 7, Issue 7 | Pages 485 - 493
1 Jul 2018
Numata Y Kaneuji A Kerboull L Takahashi E Ichiseki T Fukui K Tsujioka J Kawahara N

Objective. Cement thickness of at least 2 mm is generally associated with more favorable results for the femoral component in cemented hip arthroplasty. However, French-designed stems have shown favorable outcomes even with thin cement mantle. The biomechanical behaviors of a French stem, Charnley-Marcel-Kerboull (CMK) and cement were researched in this study. Methods. Six polished CMK stems were implanted into a composite femur, and one million times dynamic loading tests were performed. Stem subsidence and the compressive force at the bone-cement interface were measured. Tantalum ball (ball) migration in the cement was analyzed by micro CT. Results. The cement thickness of 95 % of the proximal and middle region was less than 2.5 mm. A small amount of stem subsidence was observed even with collar contact. The greatest compressive force was observed at the proximal medial region and significant positive correlation was observed between stem subsidence and compressive force. 9 of 11 balls in the medial region moved to the horizontal direction more than that of the perpendicular direction. The amount of ball movement distance in the perpendicular direction was 59 to 83% of the stem subsidence, which was thought to be slip in the cement of the stem. No cement defect and no cement breakage were seen. Conclusion. Thin cement in CMK stems produced effective hoop stress without excessive stem and cement subsidence. Polished CMK stem may work like force-closed fixation in short-term experiment. Cite this article: Y. Numata, A. Kaneuji, L. Kerboull, E. Takahashi, T. Ichiseki, K. Fukui, J. Tsujioka, N. Kawahara. Biomechanical behaviour of a French femoral component with thin cement mantle: The ‘French paradox’ may not be a paradox after all. Bone Joint Res 2018;7:485–493. DOI: 10.1302/2046-3758.77.BJR-2017-0288.R2


Bone & Joint Research
Vol. 8, Issue 2 | Pages 55 - 64
1 Feb 2019
Danese I Pankaj P Scott CEH

Objectives. Elevated proximal tibial bone strain may cause unexplained pain, an important cause of unicompartmental knee arthroplasty (UKA) revision. This study investigates the effect of tibial component alignment in metal-backed (MB) and all-polyethylene (AP) fixed-bearing medial UKAs on bone strain, using an experimentally validated finite element model (FEM). Methods. A previously experimentally validated FEM of a composite tibia implanted with a cemented fixed-bearing UKA (MB and AP) was used. Standard alignment (medial proximal tibial angle 90°, 6° posterior slope), coronal malalignment (3°, 5°, 10° varus; 3°, 5° valgus), and sagittal malalignment (0°, 3°, 6°, 9°, 12°) were analyzed. The primary outcome measure was the volume of compressively overstrained cancellous bone (VOCB) < -3000 µε. The secondary outcome measure was maximum von Mises stress in cortical bone (MSCB) over a medial region of interest. Results. Varus malalignment decreased VOCB but increased MSCB in both implants, more so in the AP implant. Varus malalignment of 10° reduced the VOCB by 10% and 3% in AP and MB implants but increased the MSCB by 14% and 13%, respectively. Valgus malalignment of 5° increased the VOCB by 8% and 4% in AP and MB implants, with reductions in MSCB of 7% and 10%, respectively. Sagittal malalignment displayed negligible effects. Well-aligned AP implants displayed greater VOCB than malaligned MB implants. Conclusion. All-polyethylene implants are more sensitive to coronal plane malalignments than MB implants are; varus malalignment reduced cancellous bone strain but increased anteromedial cortical bone stress. Sagittal plane malalignment has a negligible effect on bone strain. Cite this article: I. Danese, P. Pankaj, C. E. H. Scott. The effect of malalignment on proximal tibial strain in fixed-bearing unicompartmental knee arthroplasty: A comparison between metal-backed and all-polyethylene components using a validated finite element model. Bone Joint Res 2019;8:55–64. DOI: 10.1302/2046-3758.82.BJR-2018-0186.R2


Bone & Joint Research
Vol. 7, Issue 12 | Pages 639 - 649
1 Dec 2018
MacLeod AR Serrancoli G Fregly BJ Toms AD Gill HS

Objectives. Opening wedge high tibial osteotomy (HTO) is an established surgical procedure for the treatment of early-stage knee arthritis. Other than infection, the majority of complications are related to mechanical factors – in particular, stimulation of healing at the osteotomy site. This study used finite element (FE) analysis to investigate the effect of plate design and bridging span on interfragmentary movement (IFM) and the influence of fracture healing on plate stress and potential failure. Materials and Methods. A 10° opening wedge HTO was created in a composite tibia. Imaging and strain gauge data were used to create and validate FE models. Models of an intact tibia and a tibia implanted with a custom HTO plate using two different bridging spans were validated against experimental data. Physiological muscle forces and different stages of osteotomy gap healing simulating up to six weeks postoperatively were then incorporated. Predictions of plate stress and IFM for the custom plate were compared against predictions for an industry standard plate (TomoFix). Results. For both plate types, long spans increased IFM but did not substantially alter peak plate stress. The custom plate increased axial and shear IFM values by up to 24% and 47%, respectively, compared with the TomoFix. In all cases, a callus stiffness of 528 MPa was required to reduce plate stress below the fatigue strength of titanium alloy. Conclusion. We demonstrate that larger bridging spans in opening wedge HTO increase IFM without substantially increasing plate stress. The results indicate, however, that callus healing is required to prevent fatigue failure. Cite this article: A. R. MacLeod, G. Serrancoli, B. J. Fregly, A. D. Toms, H. S. Gill. The effect of plate design, bridging span, and fracture healing on the performance of high tibial osteotomy plates: An experimental and finite element study. Bone Joint Res 2018;7:639–649. DOI: 10.1302/2046-3758.712.BJR-2018-0035.R1


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1333 - 1341
1 Nov 2024
Cheung PWH Leung JHM Lee VWY Cheung JPY

Aims

Developmental cervical spinal stenosis (DcSS) is a well-known predisposing factor for degenerative cervical myelopathy (DCM) but there is a lack of consensus on its definition. This study aims to define DcSS based on MRI, and its multilevel characteristics, to assess the prevalence of DcSS in the general population, and to evaluate the presence of DcSS in the prediction of developing DCM.

Methods

This cross-sectional study analyzed MRI spine morphological parameters at C3 to C7 (including anteroposterior (AP) diameter of spinal canal, spinal cord, and vertebral body) from DCM patients (n = 95) and individuals recruited from the general population (n = 2,019). Level-specific median AP spinal canal diameter from DCM patients was used to screen for stenotic levels in the population-based cohort. An individual with multilevel (≥ 3 vertebral levels) AP canal diameter smaller than the DCM median values was considered as having DcSS. The most optimal cut-off canal diameter per level for DcSS was determined by receiver operating characteristic analyses, and multivariable logistic regression was performed for the prediction of developing DCM that required surgery.


Bone & Joint Open
Vol. 4, Issue 9 | Pages 659 - 667
1 Sep 2023
Nasser AAHH Osman K Chauhan GS Prakash R Handford C Nandra RS Mahmood A

Aims

Periprosthetic fractures (PPFs) following hip arthroplasty are complex injuries. This study evaluates patient demographic characteristics, management, outcomes, and risk factors associated with PPF subtypes over a decade.

Methods

Using a multicentre collaborative study design, independent of registry data, we identified adults from 29 centres with PPFs around the hip between January 2010 and December 2019. Radiographs were assessed for the Unified Classification System (UCS) grade. Patient and injury characteristics, management, and outcomes were compared between UCS grades. A multinomial logistic regression was performed to estimate relative risk ratios (RRR) of variables on UCS grade.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 87 - 93
2 Feb 2024
Wolf O Ghukasyan Lakic T Ljungdahl J Sundkvist J Möller M Rogmark C Mukka S Hailer NP

Aims

Our primary aim was to assess reoperation-free survival at one year after the index injury in patients aged ≥ 75 years treated with internal fixation (IF) or arthroplasty for undisplaced femoral neck fractures (uFNFs). Secondary outcomes were reoperations and mortality analyzed separately.

Methods

We retrieved data on all patients aged ≥ 75 years with an uFNF registered in the Swedish Fracture Register from 2011 to 2018. The database was linked to the Swedish Arthroplasty Register and the National Patient Register to obtain information on comorbidity, mortality, and reoperations. Our primary outcome, reoperation, or death at one year was analyzed using restricted mean survival time, which gives the mean time to either event for each group separately.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 282 - 288
1 Apr 2018
Beckmann NA Bitsch RG Gondan M Schonhoff M Jaeger S

Objectives. In order to address acetabular defects, porous metal revision acetabular components and augments have been developed, which require fixation to each other. The fixation technique that results in the smallest relative movement between the components, as well as its influence on the primary stability with the host bone, have not previously been determined. Methods. A total of 18 composite hemipelvises with a Paprosky IIB defect were implanted using a porous titanium 56 mm multihole acetabular component and 1 cm augment. Each acetabular component and augment was affixed to the bone using two screws, while the method of fixation between the acetabular component and augment varied for the three groups of six hemipelvises: group S, screw fixation only; group SC, screw plus cement fixation; group C, cement fixation only. The implanted hemipelvises were cyclically loaded to three different loading maxima (0.5 kN, 0.9 kN, and 1.8 kN). Results. Screw fixation alone resulted in up to three times more movement (p = 0.006), especially when load was increased to 100% (p < 0.001), than with the other two fixation methods (C and SC). No significant difference was noted when a screw was added to the cement fixation. Increased load resulted in increased relative movement between the interfaces in all fixation methods (p < 0.001). Conclusion. Cement fixation between a porous titanium acetabular component and augment is associated with less relative movement than screw fixation alone for all implant interfaces, particularly with increasing loads. Adding a screw to the cement fixation did not offer any significant advantage. These results also show that the stability of the tested acetabular component/augment interface affects the stability of the construct that is affixed to the bone. Cite this article: N. A. Beckmann, R. G. Bitsch, M. Gondan, M. Schonhoff, S. Jaeger. Comparison of the stability of three fixation techniques between porous metal acetabular components and augments. Bone Joint Res 2018;7:282–288. DOI: 10.1302/2046-3758.74.BJR-2017-0198.R1


Objectives. Secondary fracture healing is strongly influenced by the stiffness of the bone-fixator system. Biomechanical tests are extensively used to investigate stiffness and strength of fixation devices. The stiffness values reported in the literature for locked plating, however, vary by three orders of magnitude. The aim of this study was to examine the influence that the method of restraint and load application has on the stiffness produced, the strain distribution within the bone, and the stresses in the implant for locking plate constructs. Methods. Synthetic composite bones were used to evaluate experimentally the influence of four different methods of loading and restraining specimens, all used in recent previous studies. Two plate types and three screw arrangements were also evaluated for each loading scenario. Computational models were also developed and validated using the experimental tests. Results. The method of loading was found to affect the gap stiffness strongly (by up to six times) but also the magnitude of the plate stress and the location and magnitude of strains at the bone-screw interface. Conclusions. This study demonstrates that the method of loading is responsible for much of the difference in reported stiffness values in the literature. It also shows that previous contradictory findings, such as the influence of working length and very large differences in failure loads, can be readily explained by the choice of loading condition. Cite this article: A. MacLeod, A. H. R. W. Simpson, P. Pankaj. Experimental and numerical investigation into the influence of loading conditions in biomechanical testing of locking plate fracture fixation devices. Bone Joint Res 2018;7:111–120. DOI: 10.1302/2046-3758.71.BJR-2017-0074.R2