In 2017, the British Society for Children’s Orthopaedic Surgery engaged the profession and all relevant stakeholders in two formal research prioritization processes. In this editorial, we describe the impact of this prioritization on funding, and how research in children’s orthopaedics, which was until very recently a largely unfunded and under-investigated area, is now flourishing. Establishing research priorities was a crucial step in this process. Cite this article:
The aim of this study was to evaluate the epidemiology and treatment of Perthes’ disease of the hip. This was an anonymized comprehensive cohort study of Perthes’ disease, with a nested consented cohort. A total of 143 of 144 hospitals treating children’s hip disease in the UK participated over an 18-month period. Cases were cross-checked using a secondary independent reporting network of trainee surgeons to minimize those missing. Clinician-reported outcomes were collected until two years. Patient-reported outcome measures (PROMs) were collected for a subset of participants.Aims
Methods
The aim of this study was to inform the epidemiology and treatment of slipped capital femoral epiphysis (SCFE). This was an anonymized comprehensive cohort study, with a nested consented cohort, following the the Idea, Development, Exploration, Assessment, Long-term study (IDEAL) framework. A total of 143 of 144 hospitals treating SCFE in Great Britain participated over an 18-month period. Patients were cross-checked against national administrative data and potential missing patients were identified. Clinician-reported outcomes were collected until two years. Patient-reported outcome measures (PROMs) were collected for a subset of participants.Aims
Methods
Introduction. There is widespread variation in the management of rare orthopaedic disease, in a large part owing to uncertainty. No individual surgeon or hospital is typically equipped to amass sufficient numbers of cases to draw robust conclusions from the information available to them. The programme of research will establish the British Orthopaedic Surgery Surveillance (BOSS) Study; a nationwide reporting structure for rare disease in orthopaedic surgery. Methods. The
Aims. Slipped capital femoral epiphysis (SCFE) is one of the most common hip diseases of adolescence that can cause marked disability, yet there is little robust evidence to guide treatment. Fundamental aspects of the disease, such as frequency, are unknown and consequently the desire of clinicians to undertake robust intervention studies is somewhat prohibited by a lack of fundamental knowledge. Methods. The study is an anonymized nationwide comprehensive cohort study with nested consented within the mechanism of the British Orthopaedic Surgery Surveillance (BOSS) Study. All relevant hospitals treating SCFE in England, Scotland, and Wales will contribute anonymized case details. Potential missing cases will be cross-checked against two independent external sources of data (the national administrative data and independent trainee data). Patients will be invited to enrich the data collected by supplementing anonymized case data with patient-reported outcome measures. In line with recommendations of the IDEAL Collaboration, the study will primarily seek to determine incidence, describe case mix and variations in surgical interventions, and explore the relationships between baseline factors (patients and types of interventions) and two-year outcomes. Discussion. This is the first disease to be investigated using the
The primary stability of the cementless Oxford Unicompartmental Knee Replacement (OUKR) relies on interference fit (or press fit). Insufficient interference may cause implant loosening, whilst excessive interference could cause bone damage and fracture. The aim of this study was to identify the optimal interference fit by measuring the force required to seat the tibial component of the cementless OUKR (push-in force) and the force required to remove the component (pull-out force). Six cementless OUKR tibial components were implanted in 12 new slots prepared on blocks of solid polyurethane foam (20 pounds per cubic foot (PCF), Sawbones, Malmo, Sweden) with a range of interference of 0.1 mm to 1.9 mm using a Dartec materials testing machine HC10 (Zwick Ltd, Herefordshire, United Kingdom) . The experiment was repeated with cellular polyurethane foam (15 PCF), which is a more porous analogue for trabecular bone.Objectives
Materials and Methods