Aims. The purpose of this study was to determine whether intracellular Staphylococcus aureus is associated with recurrent infection in a rat model of open fracture. Methods. After stabilizing with Kirschner wire, we created a
This study was designed to characterize the recurrence incidence and risk factors of antibiotic-loaded cement spacer (ALCS) for definitive bone defect treatment in limb osteomyelitis. We included adult patients with limb osteomyelitis who received debridement and ALCS insertion into the bone defect as definitive management between 2013 and 2020 in our clinical centre. The follow-up time was at least two years. Data on patients’ demographics, clinical characteristics, and infection recurrence were retrospectively collected and analyzed.Aims
Methods
Fibrinolysis plays a key transition step from haematoma formation to angiogenesis and fracture healing. Low-magnitude high-frequency vibration (LMHFV) is a non-invasive biophysical modality proven to enhance fibrinolytic factors. This study investigates the effect of LMHFV on fibrinolysis in a clinically relevant animal model to accelerate osteoporotic fracture healing. A total of 144 rats were randomized to four groups: sham control; sham and LMHFV; ovariectomized (OVX); and ovariectomized and LMHFV (OVX-VT). Fibrinolytic potential was evaluated by quantifying fibrin, tissue plasminogen activator (tPA), and plasminogen activator inhibitor-1 (PAI-1) along with healing outcomes at three days, one week, two weeks, and six weeks post-fracture.Aims
Methods
Experimental studies indicate that non-steroidal anti-inflammatory drugs (NSAIDs) may have negative effects on fracture healing. This study aimed to assess the effect of immediate and delayed short-term administration of clinically relevant parecoxib doses and timing on fracture healing using an established animal fracture model. A standardized closed tibia shaft fracture was induced and stabilized by reamed intramedullary nailing in 66 Wistar rats. A ‘parecoxib immediate’ (Pi) group received parecoxib (3.2 mg/kg bodyweight twice per day) on days 0, 1, and 2. A ‘parecoxib delayed’ (Pd) group received the same dose of parecoxib on days 3, 4, and 5. A control group received saline only. Fracture healing was evaluated by biomechanical tests, histomorphometry, and dual-energy x-ray absorptiometry (DXA) at four weeks.Objectives
Methods
This systematic review aimed to assess the A systematic search was performed in Pubmed, followed by a two-step selection process. We included Objectives
Methods
Microindentation has the potential to measure the stiffness of an individual patient’s bone. Bone stiffness plays a crucial role in the press-fit stability of orthopaedic implants. Arming surgeons with accurate bone stiffness information may reduce surgical complications including periprosthetic fractures. The question addressed with this systematic review is whether microindentation can accurately measure cortical bone stiffness. A systematic review of all English language articles using a keyword search was undertaken using Medline, Embase, PubMed, Scopus and Cochrane databases. Studies that only used nanoindentation, cancellous bone or animal tissue were excluded.Objectives
Methods
Ubiquitin E3 ligase-mediated protein degradation regulates osteoblast function. Itch, an E3 ligase, affects numerous cell functions by regulating ubiquitination and proteasomal degradation of related proteins. However, the Itch-related cellular and molecular mechanisms by which osteoblast differentiation and function are elevated during bone fracture repair are as yet unknown. We examined the expression levels of E3 ligases and NF-κB members in callus samples during bone fracture repair by quantitative polymerase chain reaction (qPCR) and the total amount of ubiquitinated proteins by Western blot analysis in wild-type (WT) mice. The expression levels of osteoblast-associated genes in fracture callus from Itch knockout (KO) mice and their WT littermates were examined by qPCR. The effect of NF-κB on Itch expression in C2C12 osteoblast cells was determined by a chromatin immunoprecipitation (ChIP) assay.Objectives
Methods
Rotator cuff tears are among the most frequent upper extremity injuries. Current treatment strategies do not address the poor quality of the muscle and tendon following chronic rotator cuff tears. Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor that activates many genes that are important in skeletal muscle regeneration. HIF-1α is inhibited under normal physiological conditions by the HIF prolyl 4-hydroxylases (PHDs). In this study, we used a pharmacological PHD inhibitor, GSK1120360A, to enhance the activity of HIF-1α following the repair of a chronic cuff tear, and measured muscle fibre contractility, fibrosis, gene expression, and enthesis mechanics. Chronic supraspinatus tears were induced in adult rats, and repaired 28 days later. Rats received 0 mg/kg, 3 mg/kg, or 10 mg/kg GSK1120360A daily. Collagen content, contractility, fibre type distribution and size, the expression of genes involved in fibrosis, lipid accumulation, atrophy and inflammation, and the mechanical properties of the enthesis were then assessed two weeks following surgical repair.Objectives
Methods
There remains conflicting evidence regarding cortical bone strength
following bisphosphonate therapy. As part of a study to assess the
effects of bisphosphonate treatment on the healing of rat tibial
fractures, the mechanical properties and radiological density of
the uninjured contralateral tibia was assessed. Skeletally mature aged rats were used. A total of 14 rats received
1µg/kg ibandronate (iban) daily and 17 rats received 1 ml 0.9% sodium
chloride (control) daily. Stress at failure and toughness of the
tibial diaphysis were calculated following four-point bending tests.Objectives
Methods
One commonly used rat fracture model for bone and mineral research
is a closed mid-shaft femur fracture as described by Bonnarens in
1984. Initially, this model was believed to create very reproducible
fractures. However, there have been frequent reports of comminution
and varying rates of complication. Given the importance of precise
anticipation of those characteristics in laboratory research, we
aimed to precisely estimate the rate of comminution, its importance and
its effect on the amount of soft callus created. Furthermore, we
aimed to precisely report the rate of complications such as death
and infection. We tested a rat model of femoral fracture on 84 rats based on
Bonnarens’ original description. We used a proximal approach with
trochanterotomy to insert the pin, a drop tower to create the fracture
and a high-resolution fluoroscopic imager to detect the comminution.
We weighed the soft callus on day seven and compared the soft callus
parameters with the comminution status.Objectives
Methods
To study the vascularity and bone metabolism of the femoral head/neck
following hip resurfacing arthroplasty, and to use these results
to compare the posterior and the trochanteric-flip approaches. In our previous work, we reported changes to intra-operative
blood flow during hip resurfacing arthroplasty comparing two surgical
approaches. In this study, we report the vascularity and the metabolic
bone function in the proximal femur in these same patients at one
year after the surgery. Vascularity and bone function was assessed
using scintigraphic techniques. Of the 13 patients who agreed to
take part, eight had their arthroplasty through a posterior approach
and five through a trochanteric-flip approach.Objectives
Methods
Small animal models of fracture repair primarily investigate
indirect fracture healing via external callus formation. We present
the first described rat model of direct fracture healing. A rat tibial osteotomy was created and fixed with compression
plating similar to that used in patients. The procedure was evaluated
in 15 cadaver rats and then Objectives
Methods
Pathological fractures in children can occur
as a result of a variety of conditions, ranging from metabolic diseases and
infection to tumours. Fractures through benign and malignant bone
tumours should be recognised and managed appropriately by the treating
orthopaedic surgeon. The most common benign bone tumours that cause pathological
fractures in children are unicameral bone cysts, aneurysmal bone
cysts, non-ossifying fibromas and fibrous dysplasia. Although pathological
fractures through a primary bone malignancy are rare, these should
be recognised quickly in order to achieve better outcomes. A thorough
history, physical examination and review of plain radiographs are
crucial to determine the cause and guide treatment. In most benign
cases the fracture will heal and the lesion can be addressed at
the time of the fracture, or after the fracture is healed. A step-wise
and multidisciplinary approach is necessary in caring for paediatric
patients with malignancies. Pathological fractures do not have to
be treated by amputation; these fractures can heal and limb salvage
can be performed when indicated.
This study aims to assess the correlation of CT-based structural
rigidity analysis with mechanically determined axial rigidity in
normal and metabolically diseased rat bone. A total of 30 rats were divided equally into normal, ovariectomized,
and partially nephrectomized groups. Cortical and trabecular bone
segments from each animal underwent micro-CT to assess their average
and minimum axial rigidities using structural rigidity analysis.
Following imaging, all specimens were subjected to uniaxial compression
and assessment of mechanically-derived axial rigidity.Objectives
Methods