Advertisement for orthosearch.org.uk
Results 1 - 20 of 210
Results per page:
Bone & Joint Research
Vol. 10, Issue 7 | Pages 425 - 436
16 Jul 2021
Frommer A Roedl R Gosheger G Hasselmann J Fuest C Toporowski G Laufer A Tretow H Schulze M Vogt B

Aims. This study aims to enhance understanding of clinical and radiological consequences and involved mechanisms that led to corrosion of the Precice Stryde (Stryde) intramedullary lengthening nail in the post market surveillance era of the device. Between 2018 and 2021 more than 2,000 Stryde nails have been implanted worldwide. However, the outcome of treatment with the Stryde system is insufficiently reported. Methods. This is a retrospective single-centre study analyzing outcome of 57 consecutive lengthening procedures performed with the Stryde nail at the authors’ institution from February 2019 until November 2020. Macro- and microscopic metallographic analysis of four retrieved nails was conducted. To investigate observed corrosion at telescoping junction, scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX) were performed. Results. Adjacent to the nail’s telescoping junction, osteolytic changes were observed in bi-planar radiographs of 20/57 segments (35%) after a mean of 9.5 months (95% confidence interval 7.2 to 11.9) after surgery. A total of 8/20 patients with osseous alterations (40%) reported rest and ambulation pain of the lengthened segment during consolidation. So far, 24 Stryde nails were retrieved and in 20 (83%) macroscopic corrosion was observed at the nail’s telescoping junction. Before implant removal 11/20 radiographs (55%) of lengthened segments with these 20 nails revealed osteolysis. Implant retrieval analysis by means of SEM showed pitting and crevice corrosion. EDX detected chromium as the main metallic element of corrosion. Conclusion. Patients are exposed to the risk of implant-related osteolysis of unclear short- and long-term clinical consequences. The authors advocate in favour of an early implant removal after osseous consolidation. Cite this article: Bone Joint Res 2021;10(7):425–436


Objectives. Bioresorbable orthopaedic devices with calcium phosphate (CaP) fillers are commercially available on the assumption that increased calcium (Ca) locally drives new bone formation, but the clinical benefits are unknown. Electron beam (EB) irradiation of polymer devices has been shown to enhance the release of Ca. The aims of this study were to: 1) establish the biological safety of EB surface-modified bioresorbable devices; 2) test the release kinetics of CaP from a polymer device; and 3) establish any subsequent beneficial effects on bone repair in vivo. Methods. ActivaScrew Interference (Bioretec Ltd, Tampere, Finland) and poly(L-lactide-co-glycolide) (PLGA) orthopaedic screws containing 10 wt% β-tricalcium phosphate (β-TCP) underwent EB treatment. In vitro degradation over 36 weeks was investigated by recording mass loss, pH change, and Ca release. Implant performance was investigated in vivo over 36 weeks using a lapine femoral condyle model. Bone growth and osteoclast activity were assessed by histology and enzyme histochemistry. Results. Calcium release doubled in the EB-treated group before returning to a level seen in untreated samples at 28 weeks. Extensive bone growth was observed around the perimeter of all implant types, along with limited osteoclastic activity. No statistically significant differences between comparative groups was identified. Conclusion. The higher than normal dose of EB used for surface modification did not adversely affect tissue response around implants in vivo. Surprisingly, incorporation of β-TCP and the subsequent accelerated release of Ca had no significant effect on in vivo implant performance, calling into question the clinical evidence base for these commercially available devices. Cite this article: I. Palmer, S. A. Clarke, F. J Buchanan. Enhanced release of calcium phosphate additives from bioresorbable orthopaedic devices using irradiation technology is non-beneficial in a rabbit model: An animal study. Bone Joint Res 2019;8:266–274. DOI: 10.1302/2046-3758.86.BJR-2018-0224.R2


Objectives. Platelet-rich fibrin matrix (PRFM) has been proved to enhance tenocyte proliferation but has mixed results when used during rotator cuff repair. The optimal PRFM preparation protocol should be determined before clinical application. To screen the best PRFM to each individual’s tenocytes effectively, small-diameter culture wells should be used to increase variables. The gelling effect of PRFM will occur when small-diameter culture wells are used. A co-culture device should be designed to avoid this effect. Methods. Tenocytes harvested during rotator cuff repair and blood from a healthy volunteer were used. Tenocytes were seeded in 96-, 24-, 12-, and six-well plates and co-culture devices. Appropriate volumes of PRFM, according to the surface area of each culture well, were treated with tenocytes for seven days. The co-culture device was designed to avoid the gelling effect that occurred in the small-diameter culture well. Cell proliferation was analyzed by water soluble tetrazolium-1 (WST-1) bioassay. Results. The relative quantification (condition/control) of WST-1 assay on day seven revealed a significant decrease in tenocyte proliferation in small-diameter culture wells (96 and 24 wells) due to the gelling effect. PRFM in large-diameter culture wells (12 and six wells) and co-culture systems induced a significant increase in tenocyte proliferation compared with the control group. The gelling effect of PRFM was avoided by the co-culture device. Conclusion. When PRFM and tenocytes are cultured in small-diameter culture wells, the gelling effect will occur and make screening of personalized best-fit PRFM difficult. This effect can be avoided with the co-culture device. Cite this article: C-H. Chiu, P. Chen, W-L. Yeh, A. C-Y. Chen, Y-S. Chan, K-Y. Hsu, K-F. Lei. The gelling effect of platelet-rich fibrin matrix when exposed to human tenocytes from the rotator cuff in small-diameter culture wells and the design of a co-culture device to overcome this phenomenon. Bone Joint Res 2019;8:216–223. DOI: 10.1302/2046-3758.85.BJR-2018-0258.R1


Objectives. Secondary fracture healing is strongly influenced by the stiffness of the bone-fixator system. Biomechanical tests are extensively used to investigate stiffness and strength of fixation devices. The stiffness values reported in the literature for locked plating, however, vary by three orders of magnitude. The aim of this study was to examine the influence that the method of restraint and load application has on the stiffness produced, the strain distribution within the bone, and the stresses in the implant for locking plate constructs. Methods. Synthetic composite bones were used to evaluate experimentally the influence of four different methods of loading and restraining specimens, all used in recent previous studies. Two plate types and three screw arrangements were also evaluated for each loading scenario. Computational models were also developed and validated using the experimental tests. Results. The method of loading was found to affect the gap stiffness strongly (by up to six times) but also the magnitude of the plate stress and the location and magnitude of strains at the bone-screw interface. Conclusions. This study demonstrates that the method of loading is responsible for much of the difference in reported stiffness values in the literature. It also shows that previous contradictory findings, such as the influence of working length and very large differences in failure loads, can be readily explained by the choice of loading condition. Cite this article: A. MacLeod, A. H. R. W. Simpson, P. Pankaj. Experimental and numerical investigation into the influence of loading conditions in biomechanical testing of locking plate fracture fixation devices. Bone Joint Res 2018;7:111–120. DOI: 10.1302/2046-3758.71.BJR-2017-0074.R2


Bone & Joint Research
Vol. 10, Issue 11 | Pages 714 - 722
1 Nov 2021
Qi W Feng X Zhang T Wu H Fang C Leung F

Aims. To fully verify the reliability and reproducibility of an experimental method in generating standardized micromotion for the rat femur fracture model. Methods. A modularized experimental device has been developed that allows rat models to be used instead of large animal models, with the aim of reducing systematic errors and time and money constraints on grouping. The bench test was used to determine the difference between the measured and set values of the micromotion produced by this device under different simulated loading weights. The displacement of the fixator under different loading conditions was measured by compression tests, which was used to simulate the unexpected micromotion caused by the rat’s ambulation. In vivo preliminary experiments with a small sample size were used to test the feasibility and effectiveness of the whole experimental scheme and surgical scheme. Results. The bench test showed that a weight loading < 500 g did not affect the operation of experimental device. The compression test demonstrated that the stiffness of the device was sufficient to keep the uncontrollable motion between fracture ends, resulting from the rat’s daily activities, within 1% strain. In vivo results on 15 rats prove that the device works reliably, without overburdening the experimental animals, and provides standardized micromotion reproductively at the fracture site according to the set parameters. Conclusion. Our device was able to investigate the effect of micromotion parameters on fracture healing by generating standardized micromotion to small animal models. Cite this article: Bone Joint Res 2021;10(11):714–722


Bone & Joint Research
Vol. 13, Issue 6 | Pages 272 - 278
5 Jun 2024
Niki Y Huber G Behzadi K Morlock MM

Aims. Periprosthetic fracture and implant loosening are two of the major reasons for revision surgery of cementless implants. Optimal implant fixation with minimal bone damage is challenging in this procedure. This pilot study investigates whether vibratory implant insertion is gentler compared to consecutive single blows for acetabular component implantation in a surrogate polyurethane (PU) model. Methods. Acetabular components (cups) were implanted into 1 mm nominal under-sized cavities in PU foams (15 and 30 per cubic foot (PCF)) using a vibratory implant insertion device and an automated impaction device for single blows. The impaction force, remaining polar gap, and lever-out moment were measured and compared between the impaction methods. Results. Impaction force was reduced by 89% and 53% for vibratory insertion in 15 and 30 PCF foams, respectively. Both methods positioned the component with polar gaps under 2 mm in 15 PCF foam. However, in 30 PCF foam, the vibratory insertion resulted in a clinically undesirable polar gap of over 2 mm. A higher lever-out moment was achieved with the consecutive single blow insertion by 42% in 15 PCF and 2.7 times higher in 30 PCF foam. Conclusion. Vibratory implant insertion may lower periprosthetic fracture risk by reducing impaction forces, particularly in low-quality bone. Achieving implant seating using vibratory insertion requires adjustment of the nominal press-fit, especially in denser bone. Further preclinical testing on real bone tissue is necessary to assess whether its viscoelasticity in combination with an adjusted press-fit can compensate for the reduced primary stability after vibratory insertion observed in this study. Cite this article: Bone Joint Res 2024;13(6):272–278


Bone & Joint Research
Vol. 12, Issue 3 | Pages 155 - 164
1 Mar 2023
McCarty CP Nazif MA Sangiorgio SN Ebramzadeh E Park S

Aims. Taper corrosion has been widely reported to be problematic for modular total hip arthroplasty implants. A simple and systematic method to evaluate taper damage with sufficient resolution is needed. We introduce a semiquantitative grading system for modular femoral tapers to characterize taper corrosion damage. Methods. After examining a unique collection of retrieved cobalt-chromium (CoCr) taper sleeves (n = 465) using the widely-used Goldberg system, we developed an expanded six-point visual grading system intended to characterize the severity, visible material loss, and absence of direct component contact due to corrosion. Female taper sleeve damage was evaluated by three blinded observers using the Goldberg scoring system and the expanded system. A subset (n = 85) was then re-evaluated following destructive cleaning, using both scoring systems. Material loss for this subset was quantified using metrology and correlated with both scoring systems. Results. There was substantial agreement in grading among all three observers with uncleaned (n = 465) and with the subset of cleaned (n = 85) implants. The expanded scoring criteria provided a wider distribution of scores which ultimately correlated well with corrosion material loss. Cleaning changed the average scores marginally using the Goldberg criteria (p = 0.290); however, using the VGS, approximately 40% of the scores for all observers changed, increasing the average score from 4.24 to 4.35 (p = 0.002). There was a strong correlation between measured material loss and new grading scores. Conclusion. The expanded scoring criteria provided a wider distribution of scores which ultimately correlated well with corrosion material loss. This system provides potential advantages for assessing taper damage without requiring specialized imaging devices. Cite this article: Bone Joint Res 2023;12(3):155–164


Bone & Joint Research
Vol. 10, Issue 5 | Pages 298 - 306
1 May 2021
Dolkart O Kazum E Rosenthal Y Sher O Morag G Yakobson E Chechik O Maman E

Aims. Rotator cuff (RC) tears are common musculoskeletal injuries which often require surgical intervention. Noninvasive pulsed electromagnetic field (PEMF) devices have been approved for treatment of long-bone fracture nonunions and as an adjunct to lumbar and cervical spine fusion surgery. This study aimed to assess the effect of continuous PEMF on postoperative RC healing in a rat RC repair model. Methods. A total of 30 Wistar rats underwent acute bilateral supraspinatus tear and repair. A miniaturized electromagnetic device (MED) was implanted at the right shoulder and generated focused PEMF therapy. The animals’ left shoulders served as controls. Biomechanical, histological, and bone properties were assessed at three and six weeks. Results. Extension of the tendon from preload to the maximum load to failure was significantly better in the PEMF-treated shoulders at three weeks compared to controls (p = 0.038). The percentage strain was significantly higher in the PEMF group at both timepoints (p = 0.037). Collagen organization was significantly better (p = 0.034) as was tissue mineral density in the PEMF-treated group at three weeks (p = 0.028). Tendon immunohistochemistry revealed a prominent increase in type I collagen at the repair site at three weeks following continuous PEMF treatment compared with controls. None of the other tested parameters differed between the groups. Conclusion. MED-generated PEMF may enhance early postoperative tendon-to-bone healing in an acute rat supraspinatus detachment and repair model. Superior biomechanical elasticity parameters together with better collagen organization suggest improved RC healing. Cite this article: Bone Joint Res 2021;10(5):298–306


Bone & Joint Research
Vol. 12, Issue 10 | Pages 636 - 643
10 Oct 2023
Hamilton V Sheikh S Szczepanska A Maskell N Hamilton F Reid JP Bzdek BR Murray JRD

Aims. Orthopaedic surgery uses many varied instruments with high-speed, high-impact, thermal energy and sometimes heavy instruments, all of which potentially result in aerosolization of contaminated blood, tissue, and bone, raising concerns for clinicians’ health. This study quantifies the aerosol exposure by measuring the number and size distribution of the particles reaching the lead surgeon during key orthopaedic operations. Methods. The aerosol yield from 17 orthopaedic open surgeries (on the knee, hip, and shoulder) was recorded at the position of the lead surgeon using an Aerodynamic Particle Sizer (APS; 0.5 to 20 μm diameter particles) sampling at 1 s time resolution. Through timestamping, detected aerosol was attributed to specific procedures. Results. Diathermy (electrocautery) and oscillating bone saw use had a high aerosol yield (> 100 particles detected per s) consistent with high exposure to aerosol in the respirable range (< 5 µm) for the lead surgeon. Pulsed lavage, reaming, osteotome use, and jig application/removal were medium aerosol yield (10 to 100 particles s. -1. ). However, pulsed lavage aerosol was largely attributed to the saline jet, osteotome use was always brief, and jig application/removal had a large variability in the associated aerosol yield. Suctioning (with/without saline irrigation) had a low aerosol yield (< 10 particles s. -1. ). Most surprisingly, other high-speed procedures, such as drilling and screwing, had low aerosol yields. Conclusion. This work suggests that additional precautions should be recommended for diathermy and bone sawing, such as enhanced personal protective equipment or the use of suction devices to reduce exposure. Cite this article: Bone Joint Res 2023;12(10):636–643


Bone & Joint Research
Vol. 9, Issue 6 | Pages 293 - 301
1 Jun 2020
Hexter AT Hing KA Haddad FS Blunn G

Aims. To evaluate graft healing of decellularized porcine superflexor tendon (pSFT) xenograft in an ovine anterior cruciate ligament (ACL) reconstruction model using two femoral fixation devices. Also, to determine if pSFT allows functional recovery of gait as compared with the preoperative measurements. Methods. A total of 12 sheep underwent unilateral single-bundle ACL reconstruction using pSFT. Two femoral fixation devices were investigated: Group 1 (n = 6) used cortical suspensory fixation (Endobutton CL) and Group 2 (n = 6) used cross-pin fixation (Stratis ST). A soft screw was used for tibial fixation. Functional recovery was quantified using force plate analysis at weeks 5, 8, and 11. The sheep were euthanized after 12 weeks and comprehensive histological analysis characterized graft healing at the graft-bone interface and the intra-articular graft (ligamentization). Results. The pSFT remodelled into a ligament-like structure and no adverse inflammatory reaction was seen. The ground reaction force in the operated leg of the Endobutton group was higher at 11 weeks (p < 0.05). An indirect insertion was seen at the graft-bone interface characterized by Sharpey-like fibres. Qualitative differences in tendon remodelling were seen between the two groups, with greater crimp-like organization and more aligned collagen fibres seen with Endobutton fixation. One graft rupture occurred in the cross-pin group, which histologically showed low collagen organization. Conclusion. Decellularized pSFT xenograft remodels into a ligament-like structure after 12 weeks and regenerates an indirect-type insertion with Sharpey-like fibres. No adverse inflammatory reaction was observed. Cortical suspensory femoral fixation was associated with more enhanced graft remodelling and earlier functional recovery when compared with the stiffer cross-pin fixation


Bone & Joint Research
Vol. 11, Issue 3 | Pages 143 - 151
1 Mar 2022
Goetz J Keyssner V Hanses F Greimel F Leiß F Schwarz T Springorum H Grifka J Schaumburger J

Aims. Periprosthetic joint infections (PJIs) are rare, but represent a great burden for the patient. In addition, the incidence of methicillin-resistant Staphylococcus aureus (MRSA) is increasing. The aim of this rat experiment was therefore to compare the antibiotics commonly used in the treatment of PJIs caused by MRSA. Methods. For this purpose, sterilized steel implants were implanted into the femur of 77 rats. The metal devices were inoculated with suspensions of two different MRSA strains. The animals were divided into groups and treated with vancomycin, linezolid, cotrimoxazole, or rifampin as monotherapy, or with combination of antibiotics over a period of 14 days. After a two-day antibiotic-free interval, the implant was explanted, and bone, muscle, and periarticular tissue were microbiologically analyzed. Results. Vancomycin and linezolid were able to significantly (p < 0.05) reduce the MRSA bacterial count at implants. No significant effect was found at the bone. Rifampin was the only monotherapy that significantly reduced the bacterial count on implant and bone. The combination with vancomycin or linezolid showed significant efficacy. Treatment with cotrimoxazole alone did not achieve a significant bacterial count reduction. The combination of linezolid plus rifampin was significantly more effective on implant and bone than the control group in both trials. Conclusion. Although rifampicin is effective as a monotherapy, it should not be used because of the high rate of resistance development. Our animal experiments showed the great importance of combination antibiotic therapies. In the future, investigations with higher case numbers, varied bacterial concentrations, and changes in individual drug dosages will be necessary to be able to draw an exact comparison, possibly within a clinical trial. Cite this article: Bone Joint Res 2022;11(3):143–151


Bone & Joint Research
Vol. 8, Issue 6 | Pages 246 - 252
1 Jun 2019
Liddle A Webb M Clement N Green S Liddle J German M Holland J

Objectives. Previous studies have evidenced cement-in-cement techniques as reliable in revision arthroplasty. Commonly, the original cement mantle is reshaped, aiding accurate placement of the new stem. Ultrasonic devices selectively remove cement, preserve host bone, and have lower cortical perforation rates than other techniques. As far as the authors are aware, the impact of ultrasonic devices on final cement-in-cement bonds has not been investigated. This study assessed the impact of cement removal using the Orthosonics System for Cemented Arthroplasty Revision (OSCAR; Orthosonics) on final cement-in-cement bonds. Methods. A total of 24 specimens were manufactured by pouring cement (Simplex P Bone Cement; Stryker) into stainless steel moulds, with a central rod polished to Stryker Exeter V40 specifications. After cement curing, the rods were removed and eight specimens were allocated to each of three internal surface preparation groups: 1) burr; 2) OSCAR; and 3) no treatment. Internal holes were recemented, and each specimen was cut into 5 mm discs. Shear testing of discs was completed by a technician blinded to the original grouping, recording ultimate shear strengths. Scanning electron microscopy (SEM) was completed, inspecting surfaces of shear-tested specimens. Results. The mean shear strength for OSCAR-prepared specimens (33.6 MPa) was significantly lower than for the control (46.3 MPa) and burr (45.8 MPa) groups (p < 0.001; one-way analysis of variance (ANOVA) with Tukey’s post hoc analysis). There was no significant difference in shear strengths between control and burr groups (p = 0.57). Scanning electron microscopy of OSCAR specimens revealed evidence of porosity undiscovered in previous studies. Conclusion. Results show that the cement removal technique impacts on final cement-in-cement bonds. This in vitro study demonstrates significantly weaker bonds when using OSCAR prior to recementation into an old cement mantle compared with cement prepared with a burr or no treatment. This infers that care must be taken in surgical decision-making regarding cement removal techniques used during cement-in-cement revision arthroplasty, suggesting that the risks and benefits of ultrasonic cement removal need consideration. Cite this article: A. Liddle, M. Webb, N. Clement, S. Green, J. Liddle, M. German, J. Holland. Ultrasonic cement removal in cement-in-cement revision total hip arthroplasty: What is the effect on the final cement-in-cement bond? Bone Joint Res 2019;8:246–252. DOI: 10.1302/2046-3758.86.BJR-2018-0313.R1


Bone & Joint Research
Vol. 13, Issue 9 | Pages 507 - 512
18 Sep 2024
Farrow L Meek D Leontidis G Campbell M Harrison E Anderson L

Despite the vast quantities of published artificial intelligence (AI) algorithms that target trauma and orthopaedic applications, very few progress to inform clinical practice. One key reason for this is the lack of a clear pathway from development to deployment. In order to assist with this process, we have developed the Clinical Practice Integration of Artificial Intelligence (CPI-AI) framework – a five-stage approach to the clinical practice adoption of AI in the setting of trauma and orthopaedics, based on the IDEAL principles (https://www.ideal-collaboration.net/). Adherence to the framework would provide a robust evidence-based mechanism for developing trust in AI applications, where the underlying algorithms are unlikely to be fully understood by clinical teams.

Cite this article: Bone Joint Res 2024;13(9):507–512.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 58 - 71
17 Jan 2023
Dagneaux L Limberg AK Owen AR Bettencourt JW Dudakovic A Bayram B Gades NM Sanchez-Sotelo J Berry DJ van Wijnen A Morrey ME Abdel MP

Aims

As has been shown in larger animal models, knee immobilization can lead to arthrofibrotic phenotypes. Our study included 168 C57BL/6J female mice, with 24 serving as controls, and 144 undergoing a knee procedure to induce a contracture without osteoarthritis (OA).

Methods

Experimental knees were immobilized for either four weeks (72 mice) or eight weeks (72 mice), followed by a remobilization period of zero weeks (24 mice), two weeks (24 mice), or four weeks (24 mice) after suture removal. Half of the experimental knees also received an intra-articular injury. Biomechanical data were collected to measure passive extension angle (PEA). Histological data measuring area and thickness of posterior and anterior knee capsules were collected from knee sections.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 179 - 188
7 Mar 2023
Itoh M Itou J Imai S Okazaki K Iwasaki K

Aims

Orthopaedic surgery requires grafts with sufficient mechanical strength. For this purpose, decellularized tissue is an available option that lacks the complications of autologous tissue. However, it is not widely used in orthopaedic surgeries. This study investigated clinical trials of the use of decellularized tissue grafts in orthopaedic surgery.

Methods

Using the ClinicalTrials.gov (CTG) and the International Clinical Trials Registry Platform (ICTRP) databases, we comprehensively surveyed clinical trials of decellularized tissue use in orthopaedic surgeries registered before 1 September 2022. We evaluated the clinical results, tissue processing methods, and commercial availability of the identified products using academic literature databases and manufacturers’ websites.


Bone & Joint Research
Vol. 8, Issue 11 | Pages 518 - 525
1 Nov 2019
Whitaker S Edwards JH Guy S Ingham E Herbert A

Objectives. This study investigated the biomechanical performance of decellularized porcine superflexor tendon (pSFT) grafts of varying diameters when utilized in conjunction with contemporary ACL graft fixation systems. This aimed to produce a range of ‘off-the-shelf’ products with predictable mechanical performance, depending on the individual requirements of the patient. Methods. Decellularized pSFTs were prepared to create double-bundle grafts of 7 mm, 8 mm, and 9 mm diameter. Femoral and tibial fixation systems were simulated utilizing Arthrex suspension devices and interference screws in bovine bone, respectively. Dynamic stiffness and creep were measured, followed by ramp to failure from which linear stiffness and load at failure were measured. The mechanisms of failure were also recorded. Results. Dynamic stiffness was found to increase with greater graft diameter, with significant differences between all groups. Conversely, dynamic creep reduced with increasing graft diameter with significant differences between the 7 mm and 9 mm groups and the 8 mm and 9 mm groups. Significant differences were also found between the 7 mm, 8 mm, and 9 mm groups for linear stiffness, but no significant differences were found between groups for load at failure. The distribution of failure mechanisms was found to change with graft diameter. Conclusion. This study showed that decellularized pSFTs demonstrate comparable biomechanical properties to other ACL graft options and are a potentially viable option for ACL reconstruction. Although grafts can be stratified by their diameter to provide varying biomechanical properties, it may be more appropriate to alter the fixation technique to stratify for a greater diversity of biomechanical requirements. Cite this article: Bone Joint Res 2019;8:518–525


Bone & Joint Research
Vol. 7, Issue 6 | Pages 388 - 396
1 Jun 2018
Langton DJ Sidaginamale RP Joyce TJ Bowsher JG Holland JP Deehan D Nargol AVF Natu S

Objectives. We have encountered patients who developed large joint fluid collections with massive elevations in chromium (Cr) and cobalt (Co) concentrations following metal-on-metal (MoM) hip arthroplasties. In some cases, retrieval analysis determined that these ion concentrations could not be explained simply by the wear rates of the components. We hypothesized that these effects may be associated with aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL). Patients and Methods. We examined the influence of the ALVAL grade on synovial fluid Co and Cr concentrations following adjustment for patient and device variables, including volumetric wear rates. Initially restricting the analysis to include only patients with one MoM hip resurfacing device, we performed multiple regression analyses of prospectively collected data. We then repeated the same statistical approach using results from a larger cohort with different MoM designs, including total hip arthroplasties. Results. In the resurfacing cohort (n = 76), the statistical modelling indicated that the presence of severe ALVAL and a large fluid collection were associated with greater joint fluid Co concentrations after adjustment for volumetric wear rates (p = 0.005). These findings were replicated in the mixed implant group (n = 178), where the presence of severe ALVAL and a large fluid collection were significantly associated with greater fluid Co concentrations (p < 0.001). Conclusion. The development of severe ALVAL is associated with elevations in metal ion concentrations far beyond those expected from the volumetric loss from the prosthetic surfaces. This finding may aid the understanding of the sequence of events leading to soft-tissue reactions following MoM hip arthroplasties. Cite this article: D. J. Langton, R. P. Sidaginamale, T. J. Joyce, J. G. Bowsher, J. P. Holland, D. Deehan, A. V. F. Nargol, S. Natu. Aseptic lymphocyte-dominated vasculitis-associated lesions are related to changes in metal ion handling in the joint capsules of metal-on-metal hip arthroplasties. Bone Joint Res 2018;7:388–396. DOI: 10.1302/2046-3758.76.BJR-2018-0037


Bone & Joint Research
Vol. 13, Issue 6 | Pages 306 - 314
19 Jun 2024
Wu B Su J Zhang Z Zeng J Fang X Li W Zhang W Huang Z

Aims

To explore the clinical efficacy of using two different types of articulating spacers in two-stage revision for chronic knee periprosthetic joint infection (kPJI).

Methods

A retrospective cohort study of 50 chronic kPJI patients treated with two types of articulating spacers between January 2014 and March 2022 was conducted. The clinical outcomes and functional status of the different articulating spacers were compared. Overall, 17 patients were treated with prosthetic spacers (prosthetic group (PG)), and 33 patients were treated with cement spacers (cement group (CG)). The CG had a longer mean follow-up period (46.67 months (SD 26.61)) than the PG (24.82 months (SD 16.46); p = 0.001).


Bone & Joint Research
Vol. 12, Issue 12 | Pages 712 - 721
4 Dec 2023
Dantas P Gonçalves SR Grenho A Mascarenhas V Martins J Tavares da Silva M Gonçalves SB Guimarães Consciência J

Aims

Research on hip biomechanics has analyzed femoroacetabular contact pressures and forces in distinct hip conditions, with different procedures, and used diverse loading and testing conditions. The aim of this scoping review was to identify and summarize the available evidence in the literature for hip contact pressures and force in cadaver and in vivo studies, and how joint loading, labral status, and femoral and acetabular morphology can affect these biomechanical parameters.

Methods

We used the PRISMA extension for scoping reviews for this literature search in three databases. After screening, 16 studies were included for the final analysis.


Bone & Joint Research
Vol. 7, Issue 5 | Pages 327 - 335
1 May 2018
Sato Y Akagi R Akatsu Y Matsuura Y Takahashi S Yamaguchi S Enomoto T Nakagawa R Hoshi H Sasaki T Kimura S Ogawa Y Sadamasu A Ohtori S Sasho T

Objectives. To compare the effect of femoral bone tunnel configuration on tendon-bone healing in an anterior cruciate ligament (ACL) reconstruction animal model. Methods. Anterior cruciate ligament reconstruction using the plantaris tendon as graft material was performed on both knees of 24 rabbits (48 knees) to mimic ACL reconstruction by two different suspensory fixation devices for graft fixation. For the adjustable fixation device model (Socket group; group S), a 5 mm deep socket was created in the lateral femoral condyle (LFC) of the right knee. For the fixed-loop model (Tunnel group; group T), a femoral tunnel penetrating the LFC was created in the left knee. Animals were sacrificed at four and eight weeks after surgery for histological evaluation and biomechanical testing. Results. Histologically, both groups showed a mixture of direct and indirect healing patterns at four weeks, whereas only indirect healing patterns were observed in both groups at eight weeks. No significant histological differences were seen between the two groups at four and eight weeks in the roof zone (four weeks, S: mean 4.8 . sd. 1.7, T: mean 4.5 . sd. 0.5, p = 0.14; eight weeks, S: mean 5.8 . sd. 0.8, T: mean 4.8 . sd. 1.8, p = 0.88, Mann-Whitney U test) or side zone (four weeks, S: mean 5.0 . sd. 1.2, T: mean 4.8 . sd. 0.4, p = 0.43; eight weeks, S: mean 5.3 . sd. 0.8,T: mean 5.5 . sd. 0.8, p = 0.61, Mann-Whitney U test) . Similarly, no significant difference was seen in the maximum failure load between group S and group T at four (15.6 . sd. 9.0N and 13.1 . sd. 5.6N) or eight weeks (12.6 . sd. 3.6N and 17.1 . sd. 6.4N, respectively). Conclusion. Regardless of bone tunnel configuration, tendon-bone healing after ACL reconstruction primarily occurred through indirect healing. No significant histological or mechanical differences were observed between adjustable and fixed-loop femoral cortical suspension methods. Cite this article: Y. Sato, R. Akagi, Y. Akatsu, Y. Matsuura, S. Takahashi, S. Yamaguchi, T. Enomoto, R. Nakagawa, H. Hoshi, T. Sasaki, S. Kimura, Y. Ogawa, A. Sadamasu, S. Ohtori, T. Sasho. The effect of femoral bone tunnel configuration on tendon-bone healing in an anterior cruciate ligament reconstruction: An animal study. Bone Joint Res 2018;7:327–335. DOI: 10.1302/2046-3758.75.BJR-2017-0238.R2