Advertisement for orthosearch.org.uk
Results 1 - 20 of 211
Results per page:
Bone & Joint Research
Vol. 10, Issue 12 | Pages 790 - 796
1 Dec 2021
Fang X Wang Q Yang X Zhang F Huang C Huang Z Shen H Zhang W

Aims. To explore the effect of different durations of antibiotics after stage II reimplantation on the prognosis of two-stage revision for chronic periprosthetic joint infection (PJI). Methods. This study involved a retrospective collection of patients who underwent two-stage revision for chronic PJI and continued to use extended antibiotic prophylaxis in two regional medical centres from January 2010 to June 2018. The patients were divided into a short (≤ one month) or a long (> one month) course of treatment based on the duration of antibiotics following stage II reimplantation. The difference in the infection control rate between the two groups was compared, and prognostic factors for recurrence were analyzed. Results. A total of 105 patients with chronic PJI were enrolled: 64 patients in the short course group and 41 patients in the long course group. For 99 of the patients, the infection was under control during a follow-up period of at least 24 months after two-stage revision. For the short course group, the mean duration of antibiotic prophylaxis after stage II reimplantation was 20.17 days (SD 5.30) and the infection control rate was 95.3%; for the long course group these were 45.02 days (SD 15.03) and 92.7%, respectively. There was no significant difference in infection control rates between the two groups (p = 0.676). Cox regression analysis found that methicillin-resistant staphylococcus infection (p = 0.015) was an independent prognostic factor for recurrence. Conclusion. After stage II reimplantation surgery of two-stage revision for chronic PJI, extended antibiotic prophylaxis for less than one month can achieve good infection control rate. Cite this article: Bone Joint Res 2021;10(12):790–796


Bone & Joint Research
Vol. 10, Issue 12 | Pages 767 - 779
8 Dec 2021
Li Y Yang Y Wang M Zhang X Bai S Lu X Li Y Waldorff EI Zhang N Lee WY Li G

Aims. Distraction osteogenesis (DO) is a useful orthopaedic procedure employed to lengthen and reshape bones by stimulating bone formation through controlled slow stretching force. Despite its promising applications, difficulties are still encountered. Our previous study demonstrated that pulsed electromagnetic field (PEMF) treatment significantly enhances bone mineralization and neovascularization, suggesting its potential application. The current study compared a new, high slew rate (HSR) PEMF signal, with different treatment durations, with the standard Food and Drug Administration (FDA)-approved signal, to determine if HSR PEMF is a better alternative for bone formation augmentation. Methods. The effects of a HSR PEMF signal with three daily treatment durations (0.5, one, and three hours/day) were investigated in an established rat DO model with comparison of an FDA-approved classic signal (three hrs/day). PEMF treatments were applied to the rats daily for 35 days, starting from the distraction phase until termination. Radiography, micro-CT (μCT), biomechanical tests, and histological examinations were employed to evaluate the quality of bone formation. Results. All rats tolerated the treatment well and no obvious adverse effects were found. By comparison, the HSR signal (three hrs/day) treatment group achieved the best healing outcome, in that endochondral ossification and bone consolidation were enhanced. In addition, HSR signal treatment (one one hr/day) had similar effects to treatment using the classic signal (three three hrs/day), indicating that treatment duration could be significantly shortened with the HSR signal. Conclusion. HSR signal may significantly enhance bone formation and shorten daily treatment duration in DO, making it a potential candidate for a new clinical protocol for patients undergoing DO treatments. Cite this article: Bone Joint Res 2021;10(12):767–779


Bone & Joint Research
Vol. 13, Issue 8 | Pages 401 - 410
15 Aug 2024
Hu H Ding H Lyu J Chen Y Huang C Zhang C Li W Fang X Zhang W

Aims. This aim of this study was to analyze the detection rate of rare pathogens in bone and joint infections (BJIs) using metagenomic next-generation sequencing (mNGS), and the impact of mNGS on clinical diagnosis and treatment. Methods. A retrospective analysis was conducted on 235 patients with BJIs who were treated at our hospital between January 2015 and December 2021. Patients were divided into the no-mNGS group (microbial culture only) and the mNGS group (mNGS testing and microbial culture) based on whether mNGS testing was used or not. Results. A total of 147 patients were included in the no-mNGS group and 88 in the mNGS group. The mNGS group had a higher detection rate of rare pathogens than the no-mNGS group (21.6% vs 10.2%, p = 0.016). However, the mNGS group had lower rates of antibiotic-related complications, shorter hospital stays, and higher infection control rates compared with the no-mNGS group (p = 0.017, p = 0.003, and p = 0.028, respectively), while there was no significant difference in the duration of antibiotic use (p = 0.957). In culture-negative cases, the mNGS group had lower rates of antibiotic-related complications, shorter hospital stays, and a higher infection control rate than the no-mNGS group (p = 0.036, p = 0.033, p = 0.022, respectively), while there was no significant difference in the duration of antibiotic use (p = 0.748). Conclusion. mNGS improves detection of rare pathogens in BJIs. mNGS testing reduces antibiotic-related complications, shortens hospital stay and antibiotic use duration, and improves treatment success rate, benefits which are particularly evident in culture-negative cases. Cite this article: Bone Joint Res 2024;13(8):401–410


Bone & Joint Research
Vol. 13, Issue 3 | Pages 127 - 135
22 Mar 2024
Puetzler J Vallejo Diaz A Gosheger G Schulze M Arens D Zeiter S Siverino C Richards RG Moriarty TF

Aims. Fracture-related infection (FRI) is commonly classified based on the time of onset of symptoms. Early infections (< two weeks) are treated with debridement, antibiotics, and implant retention (DAIR). For late infections (> ten weeks), guidelines recommend implant removal due to tolerant biofilms. For delayed infections (two to ten weeks), recommendations are unclear. In this study we compared infection clearance and bone healing in early and delayed FRI treated with DAIR in a rabbit model. Methods. Staphylococcus aureus was inoculated into a humeral osteotomy in 17 rabbits after plate osteosynthesis. Infection developed for one week (early group, n = 6) or four weeks (delayed group, n = 6) before DAIR (systemic antibiotics: two weeks, nafcillin + rifampin; four weeks, levofloxacin + rifampin). A control group (n = 5) received revision surgery after four weeks without antibiotics. Bacteriology of humerus, soft-tissue, and implants was performed seven weeks after revision surgery. Bone healing was assessed using a modified radiological union scale in tibial fractures (mRUST). Results. Greater bacterial burden in the early group compared to the delayed and control groups at revision surgery indicates a retraction of the infection from one to four weeks. Infection was cleared in all animals in the early and delayed groups at euthanasia, but not in the control group. Osteotomies healed in the early group, but bone healing was significantly compromised in the delayed and control groups. Conclusion. The duration of the infection from one to four weeks does not impact the success of infection clearance in this model. Bone healing, however, is impaired as the duration of the infection increases. Cite this article: Bone Joint Res 2024;13(3):127–135


Bone & Joint Research
Vol. 13, Issue 1 | Pages 40 - 51
11 Jan 2024
Lin J Suo J Bao B Wei H Gao T Zhu H Zheng X

Aims. To investigate the efficacy of ethylenediaminetetraacetic acid-normal saline (EDTA-NS) in dispersing biofilms and reducing bacterial infections. Methods. EDTA-NS solutions were irrigated at different durations (1, 5, 10, and 30 minutes) and concentrations (1, 2, 5, 10, and 50 mM) to disrupt Staphylococcus aureus biofilms on Matrigel-coated glass and two materials widely used in orthopaedic implants (Ti-6Al-4V and highly cross-linked polyethylene (HXLPE)). To assess the efficacy of biofilm dispersion, crystal violet staining biofilm assay and colony counting after sonification and culturing were performed. The results were further confirmed and visualized by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). We then investigated the efficacies of EDTA-NS irrigation in vivo in rat and pig models of biofilm-associated infection. Results. When 10 mM or higher EDTA-NS concentrations were used for ten minutes, over 99% of S. aureus biofilm formed on all three types of materials was eradicated in terms of absorbance measured at 595 nm and colony-forming units (CFUs) after culturing. Consistently, SEM and CSLM scanning demonstrated that less adherence of S. aureus could be observed on all three types of materials after 10 mM EDTA-NS irrigation for ten minutes. In the rat model, compared with NS irrigation combined with rifampin (Ti-6Al-4V wire-implanted rats: 60% bacteria survived; HXLPE particle-implanted rats: 63.3% bacteria survived), EDTA-NS irrigation combined with rifampin produced the highest removal rate (Ti-6Al-4V wire-implanted rats: 3.33% bacteria survived; HXLPE particle-implanted rats: 6.67% bacteria survived). In the pig model, compared with NS irrigation combined with rifampin (Ti-6Al-4V plates: 75% bacteria survived; HXLPE bearings: 87.5% bacteria survived), we observed a similar level of biofilm disruption on Ti-6Al-4V plates (25% bacteria survived) and HXLPE bearings (37.5% bacteria survived) after EDTA-NS irrigation combined with rifampin. The in vivo study revealed that the biomass of S. aureus biofilm was significantly reduced when treated with rifampin following irrigation and debridement, as indicated by both the biofilm bacterial burden and crystal violet staining. EDTA-NS irrigation (10 mM/10 min) combined with rifampin effectively removes S. aureus biofilm-associated infections both in vitro and in vivo. Conclusion. EDTA-NS irrigation with or without antibiotics is effective in eradicating S. aureus biofilm-associated infection both ex and in vivo. Cite this article: Bone Joint Res 2024;13(1):40–51


Bone & Joint Research
Vol. 10, Issue 3 | Pages 166 - 173
1 Mar 2021
Kazezian Z Yu X Ramette M Macdonald W Bull AMJ

Aims. In recent conflicts, most injuries to the limbs are due to blasts resulting in a large number of lower limb amputations. These lead to heterotopic ossification (HO), phantom limb pain (PLP), and functional deficit. The mechanism of blast loading produces a combined fracture and amputation. Therefore, to study these conditions, in vivo models that replicate this combined effect are required. The aim of this study is to develop a preclinical model of blast-induced lower limb amputation. Methods. Cadaveric Sprague-Dawley rats’ left hindlimbs were exposed to blast waves of 7 to 13 bar burst pressures and 7.76 ms to 12.68 ms positive duration using a shock tube. Radiographs and dissection were used to identify the injuries. Results. Higher burst pressures of 13 and 12 bar caused multiple fractures at the hip, and the right and left limbs. Lowering the pressure to 10 bar eliminated hip fractures; however, the remaining fractures were not isolated to the left limb. Further reducing the pressure to 9 bar resulted in the desired isolated fracture of the left tibia with a dramatic reduction in the fractures to other sites. Conclusion. In this paper, a rodent blast injury model has been developed in the hindlimb of cadaveric rats that combines the blast and fracture in one insult, necessitating amputation. Experimental setup with 9 bar burst pressure and 9.13 ms positive duration created a fracture at the tibia with total reduction in non-targeted fractures, rendering 9 bar burst pressure suitable for translation to a survivable model to investigate blast injury-associated diseases. Cite this article: Bone Joint Res 2021;10(3):166–173


Bone & Joint Research
Vol. 13, Issue 3 | Pages 91 - 100
1 Mar 2024
Yamamoto Y Fukui T Sawauchi K Yoshikawa R Takase K Kumabe Y Maruo A Niikura T Kuroda R Oe K

Aims. Continuous local antibiotic perfusion (CLAP) has recently attracted attention as a new drug delivery system for orthopaedic infections. CLAP is a direct continuous infusion of high-concentration gentamicin (1,200 μg/ml) into the bone marrow. As it is a new system, its influence on the bone marrow is unknown. This study aimed to examine the effects of high-concentration antibiotics on human bone tissue-derived cells. Methods. Cells were isolated from the bone tissue grafts collected from six patients using the Reamer-Irrigator-Aspirator system, and exposed to different gentamicin concentrations. Live cells rate, apoptosis rate, alkaline phosphatase (ALP) activity, expression of osteoblast-related genes, mineralization potential, and restoration of cell viability and ALP activity were examined by in vitro studies. Results. The live cells rate (the ratio of total number of cells in the well plate to the absorbance-measured number of live cells) was significantly decreased at ≥ 500 μg/ml of gentamicin on day 14; apoptosis rate was significantly increased at ≥ 750 μg/ml, and ALP activity was significantly decreased at ≥ 750 μg/ml. Real-time reverse transcription-polymerase chain reaction results showed no significant decrease in the ALP and activating transcription factor 4 transcript levels at ≥ 1,000 μg/ml on day 7. Mineralization potential was significantly decreased at all concentrations. Restoration of cell viability was significantly decreased at 750 and 1,000 μg/ml on day 21 and at 500 μg/ml on day 28, and ALP activity was significantly decreased at 500 μg/ml on day 28. Conclusion. Our findings suggest that the exposure concentration and duration of antibiotic administration during CLAP could affect cell functions. However, further in vivo studies are needed to determine the optimal dose in a clinical setting. Cite this article: Bone Joint Res 2024;13(3):91–100


Bone & Joint Research
Vol. 10, Issue 7 | Pages 380 - 387
5 Jul 2021
Shen J Sun D Fu J Wang S Wang X Xie Z

Aims. In contrast to operations performed for other fractures, there is a high incidence rate of surgical site infection (SSI) post-open reduction and internal fixation (ORIF) done for tibial plateau fractures (TPFs). This study investigates the effect of induced membrane technique combined with internal fixation for managing SSI in TPF patients who underwent ORIF. Methods. From April 2013 to May 2017, 46 consecutive patients with SSI post-ORIF for TPFs were managed in our centre with an induced membrane technique. Of these, 35 patients were included for this study, with data analyzed in a retrospective manner. Results. All participants were monitored for a mean of 36 months (24 to 62). None were subjected to amputations. A total of 21 patients underwent two-stage surgeries (Group A), with 14 patients who did not receive second-stage surgery (Group B). Group A did not experience infection recurrence, and no implant or cement spacer loosening was noted in Group B for at least 24 months of follow-up. No significant difference was noted in the Lower Extremity Functional Scale (LEFS) and the Hospital for Special Surgery Knee Score (HSS) between the two groups. The clinical healing time was significantly shorter in Group B (p<0.001). Those with longer duration of infection had poorer functional status (p<0.001). Conclusion. Management of SSI post-ORIF for TPF with induced membrane technique combined with internal fixation represents a feasible mode of treatment with satisfactory outcomes in terms of infection control and functional recovery. Cite this article: Bone Joint Res 2021;10(7):380–387


Bone & Joint Research
Vol. 7, Issue 1 | Pages 46 - 57
1 Jan 2018
Zhou J Zhou XG Wang JW Zhou H Dong J

Objective. In the present study, we aimed to assess whether gelatin/β-tricalcium phosphate (β-TCP) composite porous scaffolds could be used as a local controlled release system for vancomycin. We also investigated the efficiency of the scaffolds in eliminating infections and repairing osteomyelitis defects in rabbits. Methods. The gelatin scaffolds containing differing amounts of of β-TCP (0%, 10%, 30% and 50%) were prepared for controlled release of vancomycin and were labelled G-TCP0, G-TCP1, G-TCP3 and G-TCP5, respectively. The Kirby-Bauer method was used to examine the release profile. Chronic osteomyelitis models of rabbits were established. After thorough debridement, the osteomyelitis defects were implanted with the scaffolds. Radiographs and histological examinations were carried out to investigate the efficiency of eliminating infections and repairing bone defects. Results. The prepared gelatin/β-TCP scaffolds exhibited a homogeneously interconnected 3D porous structure. The G-TCP0 scaffold exhibited the longest duration of vancomycin release with a release duration of eight weeks. With the increase of β-TCP contents, the release duration of the β-TCP-containing composite scaffolds was decreased. The complete release of vancomycin from the G-TCP5 scaffold was achieved within three weeks. In the treatment of osteomyelitis defects in rabbits, the G-TCP3 scaffold showed the most efficacious performance in eliminating infections and repairing bone defects. Conclusions. The composite scaffolds could achieve local therapeutic drug levels over an extended duration. The G-TCP3 scaffold possessed the optimal porosity, interconnection and controlled release performance. Therefore, this scaffold could potentially be used in the treatment of chronic osteomyelitis defects. Cite this article: J. Zhou, X. G. Zhou, J. W. Wang, H. Zhou, J. Dong. Treatment of osteomyelitis defects by a vancomycin-loaded gelatin/β-tricalcium phosphate composite scaffold. Bone Joint Res 2018;7:46–57. DOI: 10.1302/2046-3758.71.BJR-2017-0129.R2


Bone & Joint Research
Vol. 9, Issue 7 | Pages 341 - 350
1 Jul 2020
Marwan Y Cohen D Alotaibi M Addar A Bernstein M Hamdy R

Aims. To systematically review the outcomes and complications of cosmetic stature lengthening. Methods. PubMed and Embase were searched on 10 November 2019 by three reviewers independently, and all relevant studies in English published up to that date were considered based on predetermined inclusion/exclusion criteria. The search was done using “cosmetic lengthening” and “stature lengthening” as key terms. The Preferred Reporting Item for Systematic Reviews and Meta-Analyses statement was used to screen the articles. Results. A total of 11 studies including 795 patients were included. The techniques used in the majority of the patients were classic 3- or 4-ring Ilizarov fixator (267 patients; 33.6%) and lengthening over nail (LON) (253 patients; 31.8%), while implantable lengthening nail (ILN) was used in the smallest number of patients (63 patients; 7.9%). Mean end lengthening achieved was 6.7 cm (SD 0.6; 1.5 to 13.0), and the mean follow-up duration was 4.9 years (SD 2.1; 41 days to 7 years). Overall, the mean number of problems, obstacles, and complications per patient was 0.78 (SD 0.5), 0.94 (SD 1.0), and 0.15 (SD 0.2), respectively. The most common problem and obstacle was ankle equinus deformity, while the most common complications were deformation of the regenerate after end of treatment and subtalar joint stiffness/deformity. Conclusion. Cosmetic stature lengthening provides favourable height gain, patient satisfaction, and functional outcomes, with low rate of major complications. Clear indications, contraindications, and guidelines for cosmetic stature lengthening are needed. Cite this article: Bone Joint Res 2020;9(7):341–350


Bone & Joint Research
Vol. 5, Issue 4 | Pages 106 - 115
1 Apr 2016
Gruber HE Ode G Hoelscher G Ingram J Bethea S Bosse MJ

Objectives. The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics. Methods. Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student t-test (two tailed; p < 0.05 was considered significant). Results. Average PMMA spacer in vivo time was 11.9 weeks (six to 18). Trabecular bone was present in 33.3% of the biomembrane specimens; bone presence did not correlate with spacer duration. Biomembrane morphology showed high vascularity and collagen content and positive staining for the key bone forming regulators, bone morphogenetic protein 2 (BMP2) and runt-related transcription factor 2 (RUNX2). Positive differentiation of cultured biomembrane cells for osteogenesis was found in cells from patients with PMMA present for six to 17 weeks. Stem cell differentiation showed greater variability in pluripotency for osteogenic potential (70.0%) compared with chondrogenic or adipogenic potentials (100% and 90.0%, respectively). Significant upregulation of BMP2 and 6, numerous collagens, and bone gla protein was present in biomembrane compared with the cultured cell line. Biomembranes with longer resident PMMA spacer duration (vs those with shorter residence) showed significant upregulation of bone-related, stem cell, and vascular-related genes. Conclusion. The biomembrane technique is gaining favour in the management of complicated bone defects. Novel data on biological mechanisms provide improved understanding of the biomembrane’s osteogenic potential and molecular properties. Cite this article: Dr H. E. Gruber. Osteogenic, stem cell and molecular characterisation of the human induced membrane from extremity bone defects. Bone Joint Res 2016;5:106–115. DOI: 10.1302/2046-3758.54.2000483


Bone & Joint Research
Vol. 13, Issue 9 | Pages 497 - 506
16 Sep 2024
Hsieh H Yen H Hsieh W Lin C Pan Y Jaw F Janssen SJ Lin W Hu M Groot O

Aims

Advances in treatment have extended the life expectancy of patients with metastatic bone disease (MBD). Patients could experience more skeletal-related events (SREs) as a result of this progress. Those who have already experienced a SRE could encounter another local management for a subsequent SRE, which is not part of the treatment for the initial SRE. However, there is a noted gap in research on the rate and characteristics of subsequent SREs requiring further localized treatment, obligating clinicians to extrapolate from experiences with initial SREs when confronting subsequent ones. This study aimed to investigate the proportion of MBD patients developing subsequent SREs requiring local treatment, examine if there are prognostic differences at the initial treatment between those with single versus subsequent SREs, and determine if clinical, oncological, and prognostic features differ between initial and subsequent SRE treatments.

Methods

This retrospective study included 3,814 adult patients who received local treatment – surgery and/or radiotherapy – for bone metastasis between 1 January 2010 and 31 December 2019. All included patients had at least one SRE requiring local treatment. A subsequent SRE was defined as a second SRE requiring local treatment. Clinical, oncological, and prognostic features were compared between single SREs and subsequent SREs using Mann-Whitney U test, Fisher’s exact test, and Kaplan–Meier curve.


Bone & Joint Research
Vol. 12, Issue 4 | Pages 259 - 273
6 Apr 2023
Lu R Wang Y Qu Y Wang S Peng C You H Zhu W Chen A

Aims

Osteoarthritis (OA) is a prevalent joint disorder with inflammatory response and cartilage deterioration as its main features. Dihydrocaffeic acid (DHCA), a bioactive component extracted from natural plant (gynura bicolor), has demonstrated anti-inflammatory properties in various diseases. We aimed to explore the chondroprotective effect of DHCA on OA and its potential mechanism.

Methods

In vitro, interleukin-1 beta (IL-1β) was used to establish the mice OA chondrocytes. Cell counting kit-8 evaluated chondrocyte viability. Western blotting analyzed the expression levels of collagen II, aggrecan, SOX9, inducible nitric oxide synthase (iNOS), IL-6, matrix metalloproteinases (MMPs: MMP1, MMP3, and MMP13), and signalling molecules associated with nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Immunofluorescence analysis assessed the expression of aggrecan, collagen II, MMP13, and p-P65. In vivo, a destabilized medial meniscus (DMM) surgery was used to induce mice OA knee joints. After injection of DHCA or a vehicle into the injured joints, histological staining gauged the severity of cartilage damage.


Bone & Joint Research
Vol. 13, Issue 11 | Pages 647 - 658
12 Nov 2024
Li K Zhang Q

Aims

The incidence of limb fractures in patients living with HIV (PLWH) is increasing. However, due to their immunodeficiency status, the operation and rehabilitation of these patients present unique challenges. Currently, it is urgent to establish a standardized perioperative rehabilitation plan based on the concept of enhanced recovery after surgery (ERAS). This study aimed to validate the effectiveness of ERAS in the perioperative period of PLWH with limb fractures.

Methods

A total of 120 PLWH with limb fractures, between January 2015 and December 2023, were included in this study. We established a multidisciplinary team to design and implement a standardized ERAS protocol. The demographic, surgical, clinical, and follow-up information of the patients were collected and analyzed retrospectively.


Bone & Joint Research
Vol. 13, Issue 10 | Pages 525 - 534
1 Oct 2024
Mu W Xu B Wang F Maimaitiaimaier Y Zou C Cao L

Aims

This study aimed to assess the risk of acute kidney injury (AKI) associated with combined intravenous (IV) and topical antibiotic therapy in patients undergoing treatment for periprosthetic joint infections (PJIs) following total knee arthroplasty (TKA), utilizing the Kidney Disease: Improving Global Outcomes (KDIGO) criteria for classification.

Methods

We conducted a retrospective analysis of 162 knees (162 patients) that received treatment for PJI post-TKA with combined IV and topical antibiotic infusions at a single academic hospital from 1 January 2010 to 31 December 2022. The incidence of AKI was evaluated using the KDIGO criteria, focussing on the identification of significant predictors and the temporal pattern of AKI development.


Bone & Joint Research
Vol. 13, Issue 11 | Pages 673 - 681
22 Nov 2024
Yue C Xue Z Cheng Y Sun C Liu Y Xu B Guo J

Aims

Pain is the most frequent complaint associated with osteonecrosis of the femoral head (ONFH), but the factors contributing to such pain are poorly understood. This study explored diverse demographic, clinical, radiological, psychological, and neurophysiological factors for their potential contribution to pain in patients with ONFH.

Methods

This cross-sectional study was carried out according to the “STrengthening the Reporting of OBservational studies in Epidemiology” statement. Data on 19 variables were collected at a single timepoint from 250 patients with ONFH who were treated at our medical centre between July and December 2023 using validated instruments or, in the case of hip pain, a numerical rating scale. Factors associated with pain severity were identified using hierarchical multifactor linear regression.


Bone & Joint Research
Vol. 13, Issue 1 | Pages 19 - 27
5 Jan 2024
Baertl S Rupp M Kerschbaum M Morgenstern M Baumann F Pfeifer C Worlicek M Popp D Amanatullah DF Alt V

Aims

This study aimed to evaluate the clinical application of the PJI-TNM classification for periprosthetic joint infection (PJI) by determining intraobserver and interobserver reliability. To facilitate its use in clinical practice, an educational app was subsequently developed and evaluated.

Methods

A total of ten orthopaedic surgeons classified 20 cases of PJI based on the PJI-TNM classification. Subsequently, the classification was re-evaluated using the PJI-TNM app. Classification accuracy was calculated separately for each subcategory (reinfection, tissue and implant condition, non-human cells, and morbidity of the patient). Fleiss’ kappa and Cohen’s kappa were calculated for interobserver and intraobserver reliability, respectively.


Bone & Joint Research
Vol. 13, Issue 10 | Pages 535 - 545
2 Oct 2024
Zou C Guo W Mu W Wahafu T Li Y Hua L Xu B Cao L

Aims

We aimed to determine the concentrations of synovial vancomycin and meropenem in patients treated by single-stage revision combined with intra-articular infusion following periprosthetic joint infection (PJI), thereby validating this drug delivery approach.

Methods

We included 14 patients with PJI as noted in their medical records between November 2021 and August 2022, comprising eight hip and seven knee joint infections, with one patient experiencing bilateral knee infections. The patients underwent single-stage revision surgery, followed by intra-articular infusion of vancomycin and meropenem (50,000 µg/ml). Synovial fluid samples were collected to assess antibiotic concentrations using high-performance liquid chromatography.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 306 - 314
19 Jun 2024
Wu B Su J Zhang Z Zeng J Fang X Li W Zhang W Huang Z

Aims

To explore the clinical efficacy of using two different types of articulating spacers in two-stage revision for chronic knee periprosthetic joint infection (kPJI).

Methods

A retrospective cohort study of 50 chronic kPJI patients treated with two types of articulating spacers between January 2014 and March 2022 was conducted. The clinical outcomes and functional status of the different articulating spacers were compared. Overall, 17 patients were treated with prosthetic spacers (prosthetic group (PG)), and 33 patients were treated with cement spacers (cement group (CG)). The CG had a longer mean follow-up period (46.67 months (SD 26.61)) than the PG (24.82 months (SD 16.46); p = 0.001).


Bone & Joint Research
Vol. 12, Issue 8 | Pages 467 - 475
2 Aug 2023
Wu H Sun D Wang S Jia C Shen J Wang X Hou C Xie Z Luo F

Aims

This study was designed to characterize the recurrence incidence and risk factors of antibiotic-loaded cement spacer (ALCS) for definitive bone defect treatment in limb osteomyelitis.

Methods

We included adult patients with limb osteomyelitis who received debridement and ALCS insertion into the bone defect as definitive management between 2013 and 2020 in our clinical centre. The follow-up time was at least two years. Data on patients’ demographics, clinical characteristics, and infection recurrence were retrospectively collected and analyzed.