The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics.Aims
Methods
The cementless Oxford unicompartmental knee replacement
has been demonstrated to have superior fixation on radiographs and
a similar early complication rate compared with the cemented version.
However, a small number of cases have come to our attention where,
after an apparently successful procedure, the tibial component subsides into
a valgus position with an increased posterior slope, before becoming
well-fixed. We present the clinical and radiological findings of
these six patients and describe their natural history and the likely
causes. Two underwent revision in the early post-operative period,
and in four the implant stabilised and became well-fixed radiologically with
a good functional outcome. This situation appears to be avoidable by minor modifications
to the operative technique, and it appears that it can be treated
conservatively in most patients. Cite this article: