Current implant designs and materials provide a high grade of quality and safety, but aseptic implant loosening is still the main reason for total hip revision. Highly cross-linked polyethylene (HX-PE) is used successfully in total hip replacements (THR) since several years. The good wear properties lead to a reduction of wear debris and may contribute to a longer survival time of the THRs. Furthermore, thin HX-PE liner allows the use of larger femoral heads associated with a decreased risk of dislocation and an improved range of motion. However, the cross-linking process is associated with a loss of mechanical properties of the polyethylene material which compromise the use of thin HX-PE liner in terms of high stress situations. The aim of the present study was the experimental wear analysis of HX-PE liner under steep acetabular cup position. Furthermore, a finite element analysis (FEA) was performed in order to calculate the stress within the HX-PE material in case of steep cup position under physiological loading. Experimental wear testing was performed for 5 Mio load cycles, using highly cross-linked polyethylene (HX-PE) acetabular liner combined with 44 mm ceramic femoral heads at a standard position of the acetabular cup (30° inclination) according to ISO 14242 as well as at 60° cup inclination. The wall thickness of the HX-PE liner was 3.8 mm. A hip wear simulator, according to ISO 14242 (EndoLab GmbH, Rosenheim, Germany), was used and wear was determined gravimetrically. Moreover, finite element models of the THR system at standard and steep cup position was created by Abaqus/CAE (Dessault Systemes Providence, USA). Using the finite element software Abaqus (Dessault Systemes Providence, USA) the total hip implants were physiologically loaded with maximum force of the gait cycle (3.0 kN). Thereby, the stresses within the HX-PE material were analysed. The average gravimetrical wear rates of the HX-PE liners at standard implant position (30°) and 60° cup inclination showed small wear amounts of 3.15 ± 0.32 mg and 1.92 ± 1.00 mg per million cycles, respectively. The FEA revealed a clear increase of stresses at the HX-PE liner with respect to steep cup position (von Mises stress of 8.78 MPa) compared to ISO standard implant position (von Mises stress of 5.70 MPa). The wear simulator tests could not demonstrate significant differences of gravimetrical wear amount of HX-PE liners under steep hip cup position compared to standard implant position. The small contact surface between the femoral head and the SX-PE liner during the wear testing may lead to the low wear rate of the misaligned acetabluar cup. Moreover, the FEA showed that the effect of a misaligned acetabular cup on the stresses within the polyethylene liner can be critical. Although an increase of wear could not be detected a steeper acetabular cup position using thin HX-PE liners should be avoided due to higher stresses preventing implant failure in clinical application.
The prevalent cause of implant failure after total joint replacement is aseptic loosening caused by wear debris. Improvement of the wear behaviour of the articulating bearing between the cup and femoral head is essential for increased survival rate of artificial hip joints. Cross-linking of the polyethylene (PE) material is one attempt to reduce wear particle release at the articulating surface. Various cross-linked polyethylenes (X-PE) are used in orthopaedics since several years. In total hip arthroplasty (THA) the use of larger femoral head sizes has specific reasons. Larger heads lead to a decreased risk of total hip dislocation and impingement as well as an improved range of motion in comparison to smaller head sizes like 28mm or less. However, the increasing diameter of femoral head can be associated with lower thickness of the PE liner and increased wear rate. Cross-linking of PE can improve the wear rate of the liner and hence supports the use of larger femoral heads. The aim of this experimental study was to evaluate the wear of standard vs. sequential X-PE (X3-PE) liner in combination with different ceramic femoral head sizes. Wear testing was performed for 5 million load cycles using standard UHMW-PE liners (N2Vac) and X3-PE liners (each Stryker GmbH & Co. KG, Duisburg, Germany) combined with 28mm ceramic ball heads and the Trident PSL acetabular cup (Stryker). Furthermore, X3-PE liners with an internal diameter of 36mm and 44mm and decreased wall thickness (5.9mm and 3.8mm) were combined with corresponding ceramic heads. An eight station hip wear simulator according to ISO 14242 (EndoLab GmbH, Rosenheim, Germany) was used to carry out the standard wear tests. The tests were realised in temperature-controlled chambers at 37°C containing calf serum (protein content 20g/l). The average gravimetrical wear rates of the standard UHMW-PE (N2Vac) liners combined with 28mm ceramic heads amounted to 12.6 ± 0.8mg/million cycles. Wear of X3-PE liners in combination with 28 mm ceramic heads was not detectable. The average gravimetrical wear rates of the X3-PE liners in combination with 36mm and 44mm ceramic heads amounted to 2.0 ± 0.5mg and 3.1 ± 0.3mg/million cycles, respectively. The purpose of this study was to evaluate the effect of femoral head size at THA on standard and sequential X-PE liner. The wear simulator tests showed that the wear rate of PE liners with small heads (28mm) decreased by cross-linking of the PE significantly. The amount of wear at X-PE increased slightly with larger head size (36mm and 44mm). However, by sequential cross-linking, the wear rate using thinner liners and larger femoral heads is reduced to a fractional amount of wear at conventional UHMW-PE. Hence, the above-mentioned advantages of larger femoral head diameters can be realised by improved wear behaviour of sequential X-PE.
Due to increased life expectancy of human population, the amount of total knee replacements (TKR) is expected to increase. TKR reached a high grade of quality and safety, but most often it fail because of aseptic implant loosening caused by polyethylene (PE) wear debris. Wear is generated at the articulating surfaces, e.g. caused by three body particles, like bone fragments or bone cement particles. The aim of this experimental study was to compare the wear of tibial PE inserts combined with metallic and ceramic femoral components at three body wear situation induced by polymethylmethacrylate (PMMA) and zirconia (ZrO2) particles from the bone cement. Wear testing was performed for 5 Mio load cycles, using tibial standard PE inserts combined with the same CR femoral component, in two different materials, Cobalt Chromium (CoCrMo) and Biolox delta ® ceramic (Multigen Plus Knee System, Lima Corporate, Italy). A knee wear simulator, according to ISO 14243 (EndoLab GmbH, Rosenheim, Germany), was used to carry out the tests. The tests were performed in temperature-controlled test chambers at 37 °C, containing calf serum with a protein content of 30 g/l. Polymethylmethacrylate (PMMA) and zirconia (ZrO2) bone cement particles (Palacos R ®) were manufactured to a size of 30 μm. The three body particles were added at all stations onto the articulating surface of the tibial PE insert (7mg per condyle) at every 500,000 cycles. Wear was determined gravimetrically and the surfaces of tibial inserts were analysed by scanning electron microscope (SEM) after finishing the 5 million cycles. Furthermore, roughness of the PE insert surfaces and the articulating surfaces of the different femoral components were detected and the PE wear particles were analysed by SEM. The average gravimetrical wear rates of the tibial PE inserts in combination with CoCr and Biolox delta ® ceramic femoral components amounted to 6.4 ± 0.9 mg and 2.6 ± 0.4 mg per million cycles, respectively. Beside bone cement particles on the articulating surface of the PE inserts, polished surfaces and scratches were detected by SEM. In comparison to the untreated surfaces of the PE inserts at both material pairings the surface roughness at the articulating areas showed deep scratches and polished regions. Analyses of the metallic femoral components showed scratches at the articulating surfaces, none on ceramics. The present study pointed out the effect of femoral component material in an abrasive three body wear situation on the wear properties of TKR. The wear simulator tests showed that wear of PE inserts under three body wear conditions, in combination with ceramic femoral components, was significantly lower than with metallic femoral components. With regard to anti-allergic properties, ceramic femoral components are promising products for TKR.
Sufficient primary stability of the acetabular cup is essential for stable osseous integration of the implant after total hip arthroplasty. By means of under-reaming the cavities press-fit cups gain their primary stability in the acetabular bone stock. These metal-backed cups are inserted intra-operatively using an impact hammer. The aim of this experimental study was to obtain the forces exerted by the hammer both in-vivo and in-vitro as well as to determine the resulting primary stability of the cups in-vitro. Two different artificial bone models were applied to simulate osteoporotic and sclerotic bone. Polymeth-acrylamid (PMI, ROHACELL 110 IG, Gaugler &
Lutz, Germany) was used as an osteoporotic bone substitute, whereas a composite model made of a PMI-Block and a 4 mm thick (cortical) Polyvinyl chloride (PVC) layer (AIREX C70.200, Gaugler &
Lutz, Germany) was deployed to simulate sclerotic bone. In all artificial bone blocks cavities were reamed for a press-fit cup (Trident PSL, Size 56mm, Stryker, USA) using the original surgical instrument. The impactor of the cup was equipped with a piezoelectric ring sensor (PCB Piezotronics, Germany). Using the standard surgical hammer (1.2kg) the acetabular cups were implanted into the bone substitute material by a male (95kg) and a female (75kg) surgeon. Subsequently, primary stability of the implant (n=5) was determined in a pull-out test setup using a universal testing machine (Z050, Ziwck/Roell, Germany). For validation the impaction forces were recorded intra-operatively using the identical press-fit cup design. An average impaction force of 4.5±0.6kN and 6.3±0.4kN using the PMI and the composite bone models respectively were achieved by the female surgeon in vitro. 7.4±1.5kN and 7.7±0.8kN respectively were obtained by the male surgeon who reached an average in-vivo impaction force of 7.5±1.6kN. Using the PMI-model a pull-out force of 298±72N and 201±112N were determined for the female and male surgeons respectively. However, using the composite bone model approximately half the pull-out force was measured for the female surgeon (402±39N) compared to the male surgeon (869±208N). Our results show that impact forces measured in-vitro correspond to the data recorded in-vivo. Using the osteoporotic bone model the pull-out test revealed that too high impaction forces affect the pull-out force negatively and hence the primary implant stability is reduced, whereas higher impact forces improve primary stability considerably in the sclerotic bone model. In conclusion, the amount of impaction force contributes to the quality of the obtained primary cup stability substantially and should be adjusted intra-operatively according to the bone quality of each individual patient.
For orthopaedic implants the adhesive strength of bone cells on implant surfaces is of high interest. In some cases the adherence of cells is desirable, e.g. on endoprosthetic implants, in others, mainly temporarily used implants, e.g. intramedullary nails, it is not favourable for the cells to attach to the implant. Therefore, besides cell spreading and proliferation on surfaces the adhesion strength with which cells bond to the substrate is of high interest. There are different approaches to determine bone cell adhesion, but no easy to operate quantitative methods are available. For this purpose, based on the spinning disc principle, we have developed a new adhesion device in conjunction with an inverse confocal laser scanning microscope (LSM). Polished disc-shaped test samples made of Ti6Al4V were seeded with bone cells (MG-63), stained with a fluorescent dye, at defined radial positions and were incubated for 18 h with cell medium. After incubation the test samples were placed into the adhesion chamber filled with 250 ml cell medium (DMEM). The test samples were rotated at various velocities until a minimum detachment of 50% was achieved. Using the LSM the detachment of the bone cells at the defined radial positions was determined and the cell count was recorded before and after rotation by means of imaging software. An average shear stress of 50 N/m2 was determined for polished Ti6Al4V surfaces. To calculate the adhesion force, the cross-sectional cell area has to be measured by the xz-scan of the LSM. Our results are reproducible and comparable to the data found in literature. The advantage of our new approach is that the same cells can be observed before and after rotation as well as different rotational speeds can be applied to the same cell population. Further investigations e.g. using different surfaces are carried out.