The ability to determine human bone stiffness is of clinical relevance in many fields, including bone quality assessment and orthopaedic prosthesis design. Stiffness can be measured using compression testing, an experimental technique commonly used to test bone specimens A keyword search of all English language articles up until December 2017 of compression testing of bone was undertaken in Medline, Embase, PubMed, and Scopus databases. Studies using bulk tissue, animal tissue, whole bone, or testing techniques other than compression testing were excluded.Objectives
Methods
Microindentation has the potential to measure the stiffness of an individual patient’s bone. Bone stiffness plays a crucial role in the press-fit stability of orthopaedic implants. Arming surgeons with accurate bone stiffness information may reduce surgical complications including periprosthetic fractures. The question addressed with this systematic review is whether microindentation can accurately measure cortical bone stiffness. A systematic review of all English language articles using a keyword search was undertaken using Medline, Embase, PubMed, Scopus and Cochrane databases. Studies that only used nanoindentation, cancellous bone or animal tissue were excluded.Objectives
Methods
The increase in revision joint replacement surgery and fractures of bone around orthopaedic implants may be partly addressed by keeping bone healthy around orthopaedic implants by inserting implants with mechanical properties closer to the patient's bone properties. We do not currently have an accurate way of calculating a patient's bone mechanical properties. We therefore posed a simple question: can data derived from a micro-indenter be used to calculate bone stiffness? We received ethical approval to retrieve femoral heads and necks from patients undergoing hip replacement surgery for research. Cortical bone from the medial calcar region of the femoral neck was cut into 3×3×6mm cuboid specimens using a diamond wafering blade. Micro-indentation testing was performed in the direction of loading of the bone using a MicroMaterials (MicroMaterials, UK) indenter, using the high load micro-indentation stage (see Figure 1). To simulate in vivo testing, the samples were kept hydrated and were not fixed or polished. From the unloading curve after indentation, the elastic modulus was calculated, using the Oliver-Pharr method using the indentation machine software. To assess which microindentation machine settings most precisely calculate the elastic modulus we varied the loading and unloading rates, load and indenter tip shape (diamond Berkovich tip, 1mm diameter Zirconia spherical tip and 1.5mm diameter ruby spherical tip). Following this, for 11 patients' bone, we performed compression testing of the same samples after they were indented with the 1.5mm diameter ruby spherical tip to assess if there was a correlation between indentation values of apparent elastic modulus and apparent modulus values calculated by compression testing (see Figure 2). Platens compression testing was performed using an Instron 5565 (Instron, USA) materials testing machine. Bluehill compliance correction software (Instron, USA) was used to correct for machine compliance. The strain rate was set at 0.03mm/s. The apparent elastic modulus was calculated from the slope of the elastic region of the stress-strain graph. The correlation between values of apparent modulus from compression testing and indentation were analyzed using IBM SPSS Statistics 22.Introduction
Methods
The increase in revision joint replacement surgery and fractures of bone around orthopaedic implants may be partly addressed by keeping bone healthy around orthopaedic implants by inserting implants with mechanical properties closer to the patient's bone properties. We do not currently have an accurate way of calculating a patient's bone mechanical properties. We are therefore investigating whether microindentation can accurately calculate bone stiffness. We received ethical approval to retrieve femoral heads and necks from patients undergoing hip replacement surgery for research. Cortical bone from the medial calcar region of the femoral neck was cut into 3×3×6mm cuboid specimens. Micro-indentation testing was performed in the direction of loading of the bone using a MicroMaterials indenter. The samples were kept hydrated and were not fixed or polished. From the unloading curve after indentation, the elastic modulus was calculated, using the Oliver- Pharr method. To assess which microindentation machine settings most precisely calculate the elastic modulus we varied the loading and unloading rates, load and indenter tip shape. The most precise results were obtained by using a spherical indenter tip (rather than Berkovich tip), high load (10N), a loading rate of 100 mN/s and unloading rate of 300 mN/s with a pause of 60 seconds at maximum load and multiple load cycles with constant loads. Using these settings the mean elastic modulus over 12 cycles of testing was 13.0 GPa (+/- 2.47). By using a spherical indenter tip and fast unloading it was possible to get precise apparent modulus values. By unloading as fast as possible the effects of bone viscoelastic properties are minimised. By using a spherical indenter tip, plastic deformation at the tip is minimised (compared to the Berkovich tip). We are performing further standard compression tests on the samples to verify the accuracy of the indentation tests.
Currently long term survivorship is highly predictable for total knee replacements. However, they still do not have the functional outcome of a normal knee, particularly in younger people. Using our results published in 1999 we compared the functional outcomes with a modern design implant. 415 patients having an LPS Flex Mobile implant were performed by one surgeon and were assessed using the SF36 functional outcome questionnaire. Patients were looked at pre-operatively, three months post-operatively and 12 months post-operatively. The results were compared with the previously reported study and there were shown to be some exciting changes in respect to functional outcome, particularly in the younger age group, and at the same time not incurring any increased complications. Comparing the 2 studies in 1999 and this study and using the ABS survey where population norms were calculated we showed that the results in the older patients were maintained with no additional compllcations. In 1999 the younger patients performed poorly however in this new study the younger patients returned to the age matched expected norms for the broader community. Total knee replacements still do not provide normal function in a knee, however, recent changes to design concepts have permitted improved functional outcome for patients particularly in the younger age group.