Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To

Studies have demonstrated that use of peptides including bone morphogenetic proteins, fibroblast growth factors, insulin-like growth factor (IGF), and transforming growth factor-beta (TGF-beta), may be pivotal in promoting chondrogenesis and matrix development. As a prelude to studies, it is necessary to determine which gene or combination of genes gives the best result to improve proliferation of chondrocytes and synthesis of extracellar matrix. We investigate the effect of transfec-tion of recombined rat TGF-beta1 and recombined rat IGF-1 on rabbit chondrocytes ex vivo.

Chondrocytes were isolated from articular cartilage of knee joint of mature New Zealand White rabbits. Cells were seeded at a density of 1×105 cells/ml into 6-well plates. Monolayer cultures were infected respectively with recombinant rat gene pcDNA3+TGF-beta 1, pAT153+IGF-1 and lac Z reporter gene by using lipo-fectamine, and were co-transfected by pcDNA3+TGF-beta 1, pAT153+IGF-1. The control group remained uninfected. To determine whether the genes transcript were translated and the gene products were released, the synthesis of TGF-beta 1, IGF-1,and type II collagen were measured by in situ hybridization, immunohisto-chemistry and immunofluoroscopy. The proliferation of chondrocytes was detected by flow cytometer and 3H-TdR radiolabeling.

The expression of TGF-beta1,IGF-1 and type II collagen in recombinant rat gene transfection groups was high beyond control levels and the lac Z gene levels (P< 0.05). The co-transfection elevated these factors synthesis beyond the levels of single gene transfection (P< 0.05). In pcDNA3 +TGF-beta1 transfection group, the level of TGF-beta1 and type II collagen were higher than the levels of pAT153+IGF-1 group (P< 0.05), while the content of IGF-1 has no significant difference with pAT153+IGF-1 group. By using flow cytometer, the chondrocytes ratio of S stage in pcDNA3+TGF-beta 1 group, pAT153+IGF-1 group and co-transfection group was 33.4%,28.7% and 40.1% respectively, which was higher than 5.6% and 4.8% of the control group and the lac Z gene group (P< 0.05). The 3H-TdR radiolabeling detection also indicated that the recombinant rat gene transfection groups improved the chondrocytes proliferation, and co-transfection group has the best effect.

The data presented support that transfection of genes of TGF-beta1 and IGF-1 into chondrocytes ex vivo can greatly increase cell proliferation and matrix synthesis, and the co-transfection can provoke more increase in the synthesis of TGF-beta1, IGF-1 and type II collagen, which encourages the further research of gene potential therapeutic use for osteoarthritis.


Objective To decide whether recombined rat transforming growth factor beta-1 gene and insulin-like growth factor-1 gene have positive influences on ACLT-induced osteoarthritis-like changes in NZW rabbit articular cartilage.

Methods Twenty-four NZW rabbits, with osteoarthritis caused by anterior cruciate ligament transection£..ACLT£©, were distributed to 4 groups randomly and another six rabbits were taken as normal control group (group 1). Chondrocytes which had been transfected with TGF-¦Â1 gene, IGF-1 gene (group 3–5) were injected into the knee of these NZW rabbits. Experimental control group (group 2) was only suffered ACLT but nothing injected. After 4, 8 weeks, rabbits were sacrificed and evaluated by morphological grades, histological examination, examination of in situ hybridization, immunohistochemistry, and transmission electron microscopy (TEM).

Results The data of morphological grades showed that the normal control showed a significant difference compared with experimental control group (P< 0.01). The groups with injected chondrocytes carring TGF-¦Â1 gene and double genes (group 3,5) had a significant difference compared with experimental control group (P< 0.05). The in situ hybridization and immunohis-tochemistry examination showed the same results as above, and the group carring double genes (group 5) had a significant difference with that single gene (group 3,4) (P< 0.05). After 8 weeks, the examination data showed that all groups lower than the data of 4 weeks except the normal control group and experimental control group (P< 0.05). Ultrastructural examination indicated that the ultrastructure of experimental control group was more turbulent than that of normal control group. The ultra-structure of the gene therapy groups was more normal than that of experimental control group after gene therapy, but it turned to be turbulent again after 8 weeks.

Conclusion It is effectual on osteoarthritis to inject chondrocytes carring recombined TGF-¦Â1,IGF-1 genes into NZW rabbits knee joints. It was obvious that the therapy effect of double genes was better than single gene. The fact that gene expression was decreased gradually after 4 weeks makes out that gene therapy is limited by time. These results suggest that therapeutic TGF-¦Â1 and IGF-1 gene transfer may be applicable for the treatment of OA.