Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 53 - 53
1 Oct 2018
Walker PS Einhorn T Schwarzkopf R Hooper J Werner J Fernandez E
Full Access

Introduction

In major orthopaedic departments, typically several total knee systems are used. Each system requires several sets of instruments, each set with many trays of complicated and expensive parts. The logistics and costs of maintainance are considerable. Our overall goal is to investigate the feasibility of autoclavable single-use 3D printed instruments made from a polymeric material, used for any type of total knee design. The procedure will be standardized and adjustments easy to implement. Each set will be packaged individually, and used for a single case. There are many aspects to this study; in this part, the aims are to identify suitable materials for autoclavability and strength, and then to compare the accuracy of a novel design of 3D printed tibial cutting guide with a current metallic guide.

Methods

Test samples were designed to simulate shapes in current instruments, such as mating pegs and holes, threaded screws, and slotted blocks. Each set was produced in biocompatible materials, ABS-M30i, VeroClear (MED610), Ultem1010, and Nylon 12. Each part was laser scanned, and then imaged virtually using a reverse engineering software (GeoMagic). Manual measurements of key dimensions were also made using calipers. The parts were autoclaved using a standardized protocol, 30 minutes at 250° F. All parts were re-scanned and measured to determine any changes in dimensions. To test for strength and abrasion resistance, the slotted blocks were pinned to sawbones model tibias, and an oscillating saw used to cut through the slot. A compact 3D printed tibial cutting guide was then designed which fitted to the proximal tibia and allowed varus-valgus, tibial slope and height adjustments. A small laser attached to the guide projected to a target at the ankle. Tests were made on 20 sawbones, and compared with 20 with a standard metal cutting guide. Digitization was used to measure the angles of the cuts.