Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 68 - 68
4 Apr 2023
Kelly E Gibson-Watt T Elcock K Boyd M Paxton J
Full Access

The COVID-19 pandemic necessitated a pivot to online learning for many traditional, hands-on subjects such as anatomy. This, coupled with the increase in online education programmes, and the reduction of time students spend in anatomy dissection rooms, has highlighted a real need for innovative and accessible learning tools. This study describes the development of a novel 3-dimensional (3D), interactive anatomy teaching tool using structured light scanning (SLS) technology. This technique allows the 3D shape and texture of an object to be captured and displayed online, where it can be viewed and manipulated in real-time.

Human bones of the upper limb, vertebrae and whole skulls were digitised using SLS using Einscan Pro2X/H scanners. The resulting meshes were then post-processed to add the captured textures and to remove any extraneous information. The final models were uploaded into Sketchfab where they were orientated, lit and annotated. To gather opinion on these models as effective teaching tools, surveys were completed by anatomy students (n=35) and anatomy educators (n=8). Data was collected using a Likert scale response, as well as free text answers to gather qualitative information.

3D scans of the scapula, humerus, radius, ulna, vertebrae and skull were successfully produced by SLS. Interactive models were produced via scan data in Sketchfab and successfully annotated to provide labelled 3D models for examination. 94% of survey respondents agreed that the interactive models were easy to use (n=35, 31% agree and 63% strongly agree) and 97% agreed that the 3D interactive models were more useful than 2D images for learning bony anatomy (n=35; 26% agree and 71% strongly agree).

This initial study has demonstrated a suitable proof-of-concept for SLS technology as a useful technique for producing 3D interactive online tools for learning and teaching bony anatomy. Current studies are focussed on determining the SLS accuracy and the ability of SLS to capture soft tissue/joints. We believe that this tool will be a useful technique for generating online 3D interactive models to study orthopaedic anatomy.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 44 - 44
1 Oct 2019
Watt T Abbott C Oxborrow N Siddique I Verma R Angus M
Full Access

Purpose

A Virtual Spinal Clinic (VSC) was set-up at a regional spinal referral centre to see if patient care could be improved through early advice to provide timely management, early onward referral, improve patient satisfaction and minimise chronicity. The clinic was based on the successful virtual model used throughout the country within orthopaedic fracture clinics. VSC is a Consultant led multi-disciplinary (MDT) clinic run by Advanced Practitioners (AP).

Methods

A 3-month trial of the VSC was completed bi-weekly. Patients diagnosed with conservatively managed spinal fractures were referred from the on-call service. A management plan was devised by a Consultant Spinal Surgeon and communicated to patients by the AP via a telephone-call consultation where clinical advice and management could be discussed.