The role of mesenchymal stem cells (MSCs) in enhancing healing process has been examined with allogeneic and xenogeneic cells in transplantation models. However, certain factors might limit the use of allogeneic cells in clinical practice, (e.g. disease transmission, ethical issues and patient acceptance). Adipose tissue represents an abundant source for autologous cells. The aim of this study was to evaluate adipose-derived autologous cells for preventing non-union. Adults male Wistar rats (n=5) underwent a previously published surgical procedure known to result in non-union if no treatment is given. This consisted of a mid-shaft tibial osteotomy with peri/endosteal stripping stabilised by intramedullary nail fixation with a 1mm gap maintained by a spacer. During the same operation, ipsilateral inguinal subcutaneous fat was harvested and processed for cell isolation. After three weeks in culture, the cell number reached 5×106 and were injected into the fracture site. At the end of the experiment, all tibias (injected with autologous fat-MSCs) developed union. These were compared with a control group injected with PBS (n=4) and with allogenic (n=5) and xenogeneic (n=6) cell transplantation groups. The amount of callus was noticeably large in the autologous cell group and the distal-callus index was significantly greater than that of the other groups, P-value =<0.05, unpaired t-test, corrected by Benjamini & Hochberg. We report a novel method for autologous MSCs implantation to stimulate fracture healing. Local injection of autologous fat-MSCs into the fracture site resulted in a solid union in all the tibias with statistically significantly greater amounts of callus.
Temperature is known to influence muscle physiology, with the velocity of shortening, relaxation and propagation all increasing with temperature. Scant data are available, however, regarding thermal influences on energy required to induce muscle damage. Gastrocnemius and soleus muscles were harvested from 36 male rat limbs and exposed to increasing impact energy in a mechanical test rig. Muscle temperature was varied in 5°C increments, from 17°C to 42°C (to encompass the Objectives
Methods
There remains conflicting evidence regarding cortical bone strength
following bisphosphonate therapy. As part of a study to assess the
effects of bisphosphonate treatment on the healing of rat tibial
fractures, the mechanical properties and radiological density of
the uninjured contralateral tibia was assessed. Skeletally mature aged rats were used. A total of 14 rats received
1µg/kg ibandronate (iban) daily and 17 rats received 1 ml 0.9% sodium
chloride (control) daily. Stress at failure and toughness of the
tibial diaphysis were calculated following four-point bending tests.Objectives
Methods
Small animal models of fracture repair primarily investigate
indirect fracture healing via external callus formation. We present
the first described rat model of direct fracture healing. A rat tibial osteotomy was created and fixed with compression
plating similar to that used in patients. The procedure was evaluated
in 15 cadaver rats and then Objectives
Methods