Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 95
1 Mar 2002
Pollintine P Garbutt S Tobias J McNally D Wakley G Dolan P Adams M
Full Access

Osteoporotic vertebral fractures are normally attributed to weakening of the vertebral body. However, the compressive strength of the spine also depends on the manner in which the intervertebral disc presses on the vertebral body, and on load-bearing by the neural arch. We present preliminary results from a large-scale investigation into the relative importance of these three influences on vertebral compressive strength.

Lumbar motion segments from elderly cadavers were subjected to 1.5 kN of compressive loading while the distribution of compressive stress was measured along the antero-posterior diameter of the intervertebral disc, using a miniature pressure-transducer. The overall compressive force on the disc, obtained by integrating the stress profile ( 1), was subtracted from the 1.5 kN applied load to give the force resisted by the neural arch. Stress profilometry was performed with each motion segment positioned to simulate the erect standing posture, and a forward stooping posture. Vertebral strength was measured by compressing the motion segments to failure in the forward stooping posture. In life, the spine is usually compressed most severely in this posture.

A univariate analysis of results from the first 9 motion segments (aged 72–92 yrs) showed that vertebral strength increased from 2.0 kN to 4.6 kN as the compressive force resisted by the neural arch in erect postures decreased from 1.1 kN to 0.4 kN (r2 = 0.42, p = 0.05). Updated results from this on-going study will be presented at the meeting.

Preliminary results suggest that habitual load-bearing by the neural arch in erect postures can lead to progressive weakening of the vertebral body, which is effectively “stress-shielded” by the neural arch. This weakening is exposed when the spine is loaded severely in a forward stooped posture, when it has a reduced compressive strength. This mechanism could explain some features of osteoporotic vertebral fractures in old people.