Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 77 - 78
1 Jan 2003
Pullig O Weseloh G Klatt A Wagener R Swoboda B
Full Access

Introduction

Matrilin-3 is a member of the recently described matrilin family of extracellular matrix proteins containing von Willebrand factor A-like domains. The matrilin-3 subunit can form homotetramers as well as hetero-oligomers together with subunits of matrilin-1 (cartilage matrix protein). It has a restricted tissue distribution and is strongly expressed in growing skeletal tissues. Detailed information on expression and distribution of extracellular matrix proteins is important to understand cartilage function in health and in disease like osteoarthritis.

Methods

Matrilin-3 expression was analysed on decalcified normal cartilage/bone sections (N = 5) and decalcified cartilage/ bone sections with minor (N= 10), moderate (N = 10), and severe osteoarthritic lesions (N = 10). Osteoarthritic changes were classified histomorphologically, using the grading system of Mankin. Matrilin-3 expression was investigated by immunohistochemistry, in situ hybridization, Western blot analysis, and quantitative PCR. For immunohistochemistry, a polyclonal antibody against matrilin-3 was used. For Western blot analysis, cartilage extracts were obtained from normal and osteoarthritic samples, partially purified, and separated in SDS poly-acrylamide gelelectrophoreses. After blotting onto nitro-cellulose, matrilin-3 was visualized by incubation with the polyclonal anti-matrilin-3 antibody and chemiluminescence detection. Matrilin-3 -mRNA expression was determined by in situ hybridization using a digoxigenin-labeled anti-sense probe.

Results

Our results indicate that matrilin-3 is a mandatory component of mature articular cartilage with its expression being restricted to chondrocytes from the tangential zone and the upper middle cartilage zone. Osteoarthritic cartilage samples with only moderate morphological osteoarthritic destructions have elevated levels of matrilin-3 mRNA. In parallel, we found an increased deposition of matrilin-3 protein in the cartilage matrix. Matrilin-3 staining was diffusely distributed in the cartilage matrix, with no cellular staining being detectable. In cartilage samples with minor osteoarthritic lesions, matrilin-3 deposition was restricted to the middle zone and to the upper deep zone. A strong correlation was found between enhanced matrilin-3 gene and protein expression and the extent of tissue damage. Sections with severe osteoarthritic destruction showed the highest amount of matrilin-3 mRNA, strong signals in in situ hybridization, and prominent protein deposition in the middle and deep cartilage zone.

Conclusion

We conclude that matrilin-3 is an integral component of human articular cartilage matrix and that the enhanced expression of matrilin-3 in osteoarthritis may be a cellular response to the modified microenvironment in the disease.