When designing a new osteosynthesis device, the biomechanical competence must be evaluated with respect to the acting loads. In a previous study, the loads on the proximal phalanx during rehabilitation exercises were calculated. This study aimed to assess the safety of a novel customizable osteosynthesis device compared to those loads to determine when failure would occur. Forty proximal phalanges were dissected from skeletally mature female sheep and divided into four testing groups. A custom 3D printed cutting and drilling guide was used to create a reduced osteotomy and pilot holes to insert four 1.5 mm cortical screws. A novel light-curable polymer composite was used to fixate the bones with an in situ fixation patch. The constructs were tested in cyclic four-point bending in a bioreactor with ringer solution at 37°C with a valley load of 2 N. Four groups (N = 10) had increasing peak loads based on varying safety factors relative to the physiological loading (G1:100x, G2:150x, G3:175x, G4:250x). Each specimen was tested for 12,600 cycles (6 weeks of rehabilitation) or until failure occurred. After the test the thickness of the patch was measured with digital calipers and data analysis was performed in Python and R.Introduction
Method
Achieving an appropriate primary stability after implantation is a prerequisite for the long-term viability of a dental implant. Virtual testing of the bone-implant construct can be performed with finite element (FE) simulation to predict primary stability prior to implantation. In order to be translated to clinical practice, such FE modeling must be based on clinically available imaging methods. The aim of this study was to validate an FE model of dental implant primary stability using cone beam computed tomography (CBCT) with Three cadaveric mandibles (male donors, 87-97 years old) were scanned by CBCT. Twenty-three bone samples were extracted from the bones and conventional dental implants (Ø4.0mm, 9.5mm length) were inserted in each. The implanted specimens were tested under quasi-static bending-compression load (cf. ISO 14801). Sample-specific homogenized FE (hFE) models were created from the CBCT images and meshed with hexahedral elements. A non-linear constitutive model with element-wise density-based material properties was used to simulate bone and the implant was considered rigid. The experimental loading conditions were replicated in the FE model and the ultimate force was evaluated.Introduction
Method
Pedicle screw loosening in posterior instrumentation of thoracolumbar spine occurs up to 60% in osteoporotic patients. These complications may be alleviated using more flexible implant materials and novel designs that could be optimized with reliable computational modeling. This study aimed to develop and validate non-linear homogenized finite element (hFE) simulations to predict pedicle screw toggling. Ten cadaveric vertebral bodies (L1-L5) from two female and three male elderly donors were scanned with high-resolution peripheral quantitative computed tomography (HR-pQCT, Scanco Medical) and instrumented with pedicle screws made of carbon fiber-reinforced polyether-etherketone (CF/PEEK). Sample-specific 3D-printed guides ensured standardized instrumentation, embedding, and loading procedures. The samples were biomechanically tested to failure in a toggling setup using an electrodynamic testing machine (Acumen, MTS) applying a quasi-static cyclic testing protocol of three ramps with exponentially increasing peak (1, 2 and 4 mm) and constant valley displacements. Implant-bone kinematics were assessed with a stereographic 3D motion tracking camera system (Aramis SRX, GOM). hFE models with non-linear, homogenized bone material properties including a strain-based damage criterion were developed based on intact HR-pQCT and instrumented 3D C-arm scans. The experimental loading conditions were imposed, the maximum load per cycle was calculated and compared to the experimental results. HR-pQCT-based bone volume fraction (BV/TV) around the screws was correlated with the experimental peak forces at each displacement level.Introduction
Method
Intramedullary nails (IMNs) are the current gold standard for treatment of long bone diaphyseal and selected metaphyseal fractures. Their design has undergone many revisions to improve fixation techniques, conform to the bone shape with appropriate anatomic fit, reduce operative time and radiation exposure, and extend the indication of the same implant for treatment of different fracture types with minimal soft tissue irritation. The IMNs are made or either titanium alloy or stainless steel and work as load-sharing internal splints along the long bone, usually accommodating locking elements – screws and blades, often featuring angular stability and offering different configurations for multiplanar fixation – to secure secondary fracture healing with callus formation in a relative-stability environment. Bone cement augmentation of the locking elements can modulate the construct stiffness, increase the surface area at the bone-implant interface, and prevent cut-through of the locking elements. The functional requirements of IMNs are related to maintaining fracture reduction in terms of length, alignment and rotation to enhance fracture healing. The load distribution during patient's activities is along the entire bone-nail interface, with nail length and anatomic fit being important factors to avoid stress risers.
Osteosynthesis aims to maintain fracture reduction until bone healing occurs, which is not achieved in case of mechanical fixation failure. One form of failure is plastic plate bending due to overloading, occurring in up to 17% of midshaft fracture cases and often necessitating reoperation. This study aimed to replicate in-vivo conditions in a cadaveric experiment and to validate a finite element (FE) simulation to predict plastic plate bending. Six cadaveric bones were used to replicate an established ovine tibial osteotomy model with locking plates in-vitro with two implant materials (titanium, steel) and three fracture gap sizes (30, 60, 80 mm). The constructs were tested monotonically until plastic plate deformation under axial compression. Specimen-specific FE models were created from CT images. Implant material properties were determined using uniaxial tensile testing of dog bone shaped samples. The experimental tests were replicated in the simulations. Stiffness, yield, and maximum loads were compared between the experiment and FE models. Implant material properties (Young's modulus and yield stress) for steel and titanium were 184 GPa and 875 MPa, and 105 GPa and 761 MPa, respectively. Yield and maximum loads of constructs ranged between 469–491 N and 652–683 N, and 759–995 N and 1252–1600 N for steel and titanium fixations, respectively. FE models accurately and quantitatively correctly predicted experimental results for stiffness (R2=0.96), yield (R2=0.97), and ultimate load (R2=0.97). FE simulations accurately predicted plastic plate bending in osteosynthesis constructs. Construct behavior was predominantly driven by the implant itself, highlighting the importance of modelling correct material properties of metal. The validated FE models could predict subject-specific load bearing capacity of osteosyntheses
Although 3D-printed porous dental implants may possess improved osseointegration potential, they must exhibit appropriate fatigue strength. Finite element analysis (FEA) has the potential to predict the fatigue life of implants and accelerate their development. This work aimed at developing and validating an FEA-based tool to predict the fatigue behavior of porous dental implants. Test samples mimicking dental implants were designed as 4.5 mm-diameter cylinders with a fully porous section around bone level. Three porosity levels (50%, 60% and 70%) and two unit cell types (Schwarz Primitive (SP) and Schwarz W (SW)) were combined to generate six designs that were split between calibration (60SP, 70SP, 60SW, 70SW) and validation (50SP, 50SW) sets. Twenty-eight samples per design were additively manufactured from titanium powder (Ti6Al4V). The samples were tested under bending compression loading (ISO 14801) monotonically (N=4/design) to determine ultimate load (Fult) (Instron 5866) and cyclically at six load levels between 50% and 10% of Fult (N=4/design/load level) (DYNA5dent). Failure force results were fitted to F/Fult = a(Nf)b (Eq1) with Nf being the number of cycles to failure, to identify parameters For all designs, Fe was comprised between 10% (all four samples surviving) and 15% (at least one failure) of Fult. The FEA-based tool predicted Fe values of 11.7% and 12.0% of Fult for the validation sets of 50SP and 50SW, respectively. Thus, the developed FEA-based workflow could accurately predict endurance limit for different implant designs and therefore could be used in future to aid the development of novel porous implants.
Stand-alone anterior lumbar interbody fusion (ALIF) provides the opportunity to avoid supplemental posterior fixation. This may reduce morbidity and complication rate, which is of special interest in patients with reduced bone mineral density (BMD). This study aims to assess immediate biomechanical stability and radiographic outcome of a stand-alone ALIF device with integrated screws in specimens of low BMD. Eight human cadaveric spines (L4-sacrum) were instrumented with SynFix-LR™ (DePuy Synthes) at L5/S1. Quantitative computed tomography was used to measure BMD of L5 in AMIRA. Threshold values proposed by the American Society of Radiology 80 and 120 mg CaHa/mL were used to differentiate between Osteoporosis, Osteopenia, and normal BMD. Segmental lordosis, anterior and posterior disc height were analysed on pre- and postoperative radiographs (Fig 1). Specimens were tested intact and following instrumentation using a flexibility protocol consisting of three loading cycles to ±7.5 Nm in flexion-extension, lateral bending, and axial rotation. The ranges of motion (ROM) of the index level were assessed using an optoelectronic system. BMD ranged 58–181mg CaHA/mL. Comparison of pre- and postoperative radiographs revealed significant increase of L5/S1 segmental lordosis (mean 14.6°, SD 5.1, p < 0.001) and anterior disc height (mean 5.8mm, SD 1.8, p < 0.001), but not posterior disc height. ROM of 6 specimens was reduced compared to the intact state. Two specimens showed destructive failure in extension. Mean decrease was most distinct in axial rotation up to 83% followed by flexion-extension. ALIF device with integrated screws at L5/S1 significantly increases segmental lordosis and anterior disc height without correlation to BMD. Primary stability in the immediate postoperative situation is mostly warranted in axial rotation. The risk of failure might be increased in extension for some patients with reduced lumbar BMD, therefore additional posterior stabilization could be considered. For any figures or tables, please contact the authors directly.
The number of seven needed knots to provide secure hold of high strength sutures was previously reported. New technologies like tape sutures and sutures with a salt infused silicon core have been developed, potentially reducing the number of needed knots. Study aims: To investigate the influence of (1) throw number and (2) different ambient conditions on knot security in two different high-strength sutures, and (3) to compare their biomechanical competence. Two sutures (SutureTape (FT); n=56 and DynaTape (DT); n=56) were assigned for knot tying. Specimens were exposed to different media during tying, namely air, saline solution, and fat. A monotonic tensile ramp was applied. For each suture and ambient condition, seven specimens with 3 to 7 throws each were tested (n=7), evaluating their slippage and ultimate force to failure. The minimum number of throws preventing suture unraveling was determined in each suture and condition. For each suture type and condition failure occurred via rupturing in all specimens for the following minimum number of throws: FT: dry–6, wet–6, fatty-wet–6; DT: dry–6; wet–4; fatty-wet–5. No significant differences were found comparing ultimate load to rupture of the two groups with minimum number of needed throws in each media. (FT dry-6 vs. DT dry-6; p<0.07); (FT wet-6 vs. DT wet-4; p<0.20); (FT fat-6 vs. DT fat-5; p<0.58). Knot slippage of DT was significantly higher in wet and fatty conditions compared to ST p<0.001 and p<0.004. In fatty-wet conditions DT requires 5 throws to achieve a secure knot. In wet conditions this number can be reduced to 4 throws. FT needs 6 throws to provide a stable knot in all conditions. The biomechanical competence of both sutures in terms of knot slippage and peak force are comparable.
Surgical education of fracture fixation biomechanics relies mainly on simplified illustrations to distill the essence of the underlying principles. These mostly consist of textbook drawings or hands-on exercises during courses, both with unique advantages such as broad availability and haptics, respectively. Computer simulations are suited to bridge these two approaches; however, the validity of such simulations must be guaranteed to teach the correct aspects. Therefore, the aim of this study was to validate finite element (FE) simulations of bone-plate constructs to be used in surgical education in terms of fracture gap movement and implant surface strain. The validation procedure was conducted in a systematic and hierarchical manner with increasing complexity. First, the material properties of the isolated implant components were determined via four-point bending of the plate and three-point bending of the screw. Second, stiffness of the screw-plate interface was evaluated by means of cantilever bending to determine the properties of the locking mechanism. Third, implant surface strain and fracture gap motion were measured by testing various configurations of entire fixation constructs on artificial bone (Canevasit) in axial compression. The determined properties of the materials and interfaces assessed in these experiments were then implemented into FE models of entire fixation constructs with different fracture width and screw configurations. The FE-predicted implant surface strains and fracture gap motions were compared with the experimental results. The simulated results of the different construct configurations correlated strongly with the experimentally measured fracture gap motions (R2>0.99) and plate surface strains (R2>0.95). In a systematic approach, FE model validation was achieved successfully in terms of fracture gap motion and implant deformation, confirming trustworthiness for surgical education. These validated models are used in a novel online education tool OSapp (
Cartilage diseases have a significant impact on the patient's quality of life and are a heavy burden for the healthcare system. Better understanding, early detection and proper follow-up could improve quality of life and reduce healthcare related costs. Therefore, the aim of this study was to evaluate if difference between osteoarthritic (OA) and non-osteoarthritic (non-OA) knees can be detected quantitatively on cartilage and subchondral bone levels with advanced but clinical available imaging techniques. Two OA (mean age = 88.3 years) and three non-OA (mean age = 51.0 years) human cadaveric knees were scanned two times. A high-resolution peripheral quantitative computed tomography (HR-pQCT) scan (XtremeCT, Scanco Medical AG, Switzerland) was performed to quantify the bone microstructure. A contrast-enhanced clinical CT scan (GE Revolution Evo, GE Medical Systems AG, Switzerland) was acquired with the contrast agent Visipaque 320 (60 ml) to measure cartilage. Subregions dividing the condyle in four parts were identified semi-automatically and the images were segmented using adaptive thresholding. Microstructural parameters of subchondral bone and cartilage thickness were quantified. The overall cartilage thickness was reduced by 0.27 mm between the OA and non-OA knees and the subchondral bone quality decreased accordingly (reduction of 33.52 % in BV/TV in the layer from 3 to 8 mm below the cartilage) for the femoral medial condyle. The largest differences were observed at the medial part of the femoral medial condyle both for cartilage and for bone parameters, corresponding to clinical observations. Subchondral bone microstructural parameters and cartilage thickness were quantified using in vivo available imaging and apparent differences between the OA and non-OA knees were detected. Those results may improve OA follow-up and diagnosis and could lead to a better understanding of OA. However, further in vivo studies are needed to validate these methods in clinical practice.
Glenohumeral joint injuries frequently result in shoulder instability. However, the biomechanical effect of cartilage loss on shoulder stability remains unknown. The aim of the current study was to investigate biomechanically the effect of two severity stages of cartilage loss in different dislocation directions on shoulder stability.
Joint dislocation was provoked for 11 human cadaveric glenoids in seven different dislocation directions between 3 o'clock (anterior) to 9 o'clock (posterior) dislocation. Shoulder stability ratio (SSR) and concavity gradient were assessed in intact condition, and after 3 mm and 6 mm simulated cartilage loss. The influence of cartilage loss on SSR and concavity gradient was statistically evaluated.
Between intact state and 6 mm cartilage loss, both SSR and concavity gradient decreased significantly in every dislocation direction (p≤0.038), except the concavity gradient in 4 o'clock dislocation direction (p=0.088). Thereby, anterior-inferior dislocation directions were associated with the highest loss of SSR and concavity gradient of up to 59.0% and 49.4%, respectively, being significantly higher for SSR compared to all other dislocation directions (p≤0.04). The correlations between concavity gradient and SSR for pooled dislocation directions were significant for all three conditions of cartilage loss (p<0.001).
From a biomechanical perspective, articular cartilage of the glenoid contributes significantly to the concavity gradient, correlating strongly with the associated loss in glenohumeral joint stability. The highest effect of cartilage loss was observed in anterior-inferior dislocation directions, suggesting that surgical intervention should be considered for recurrent shoulder dislocations in the presence of cartilage loss.
Despite past advances of implant technologies, complication rates of fixations remain high at challenging sites such as the proximal humerus [1]. These may not only be owed to the implant itself but also to dissatisfactory surgical execution of fracture reduction and implant positioning. Therefore, the aim of this study was to quantify the instrumentation accuracy of a highly standardised and guided procedure and its influence on the biomechanical outcome and predicted failure risk. Preoperative planning of osteotomies creating an unstable 3-part fracture and fixation with a locking plate was performed based on CT scans of eight pairs of low-density proximal humerus samples from elderly female donors (85.2±5.4 years). 3D-printed subject-specific guides were used to osteotomise and instrument the samples according to the pre-OP plan. Instrumentation accuracies in terms of screw lengths and orientations were evaluated by comparing post-OP CT scans with the pre-OP plan. The fixation constructs were biomechanically tested until cyclic cut-out failure [2]. Failure risks of the planned and the post-OP configurations were predicted using a validated sample-specific finite element (FE) simulation approach [2] and correlated with the experimental outcomes. Small deviations were found for the instrumented screw trajectories compared to the planned configuration in the proximal-distal (0.3±1.3º) and anterior-posterior directions (-1.7±1.8º), and for screw tip to joint distances (-0.3±1.1 mm). Significantly higher failure risk was predicted for the post-OP compared to the planned configurations (p<0.01) via FE. When incorporating the instrumentation inaccuracies, the biomechanical results could be predicted well with FE (R2=0.70). Despite the high instrumentation accuracy achieved using sophisticated subject-specific 3D-printed guides, even minor deviations from the pre-OP plan significantly increased the FE-predicted risk of failure. This underlines the importance of intraoperative guiding technology [3] in tandem with careful pre-OP planning to assist surgeons to achieve optimal outcomes.
This study was performed with the assistance of the AO Foundation via the AOTRAUMA Network.
Osteochondral glenoid loss is associated with recurrent shoulder instability. The critical threshold for surgical stabilization is multidimensional and conclusively unknown. The aim of this work was to provide a well- measurable surrogate parameter of an unstable shoulder joint for the frequent anterior-inferior dislocation direction. The shoulder stability ratio (SSR) of 10 paired human cadaveric glenoids was determined in anterior-inferior dislocation direction. Osteochondral defects were simulated by gradually removing osteochondral structures in 5%-stages up to 20% of the intact diameter. The glenoid morphological parameters glenoid depth, concavity gradient, and defect radius were measured at each stage by means of optical motion tracking. Based on these parameters, the osteochondral stability ratio (OSSR) was calculated. Correlation analyses between SSR and all morphological parameters, as well as OSSR were performed. The loss of SSR, concavity gradient, depth and OSSR with increasing defect size was significant (all p<0.001). The loss of SSR strongly correlated with the losses of concavity gradient (PCC = 0.918), of depth (PCC = 0.899), and of OSSR (PCC = 0.949). In contrast, the percentage loss based on intact diameter (defect size) correlated weaker with SSR (PCC=0.687). Small osteochondral defects (≤10%) led to significantly higher SSR decrease in small glenoids (diameter <25mm) compared to large (≥ 25mm) ones (p ≤ 0.009). From a biomechanical perspective, the losses of concavity gradient, glenoid depth and OSSR correlate strong with the loss of SSR. Therefore, especially the loss of glenoidal depth may be considered as a valid and reliable alternative parameter to describe shoulder instability. Furthermore, smaller glenoids are more vulnerable to become unstable in case of small osteochondral loosening. On the other hand, the standardly used percentage defect size based on intact diameter correlates weaker with the magnitude of instability and may therefore not be a valid parameter for judgement of shoulder instability.
The objective of this study was to investigate how a new customizable light-curable osteosynthesis method (AdFix) compared to traditional metal hardware when loaded in torsion in an ovine phalanx model. Twenty-one ovine proximal phalanges were given a 3mm transverse osteotomy and four 1.5mm cortex screws were inserted bicortically on either side of the gap. The light-curable polymer composite was then applied using the method developed by Hutchinson [1] to create osteosyntheses in two groups, having either a narrow (6mm, N=9) or a wide (10mm, N=9) fixation patch. A final group (N=3) was fixated with conventional metal plates. The constructs were loaded in torsion at a rate of 6°/second until failure or 45° of rotation was reached. Torque and angular displacement were measured, torsional stiffness was calculated as the slope of the Torque-Displacement curve, and maximum torque was queried for each specimen. The torsional stiffnesses of the narrow, wide, and metal plate constructs were 39.1 ± 6.2, 54.4 ± 6.3, and 16.2 ± 3.0 Nmm/° respectively. All groups were statistically different from each other (p<0.001). The maximum torques of the narrow, wide, and metal plate constructs were 424 ± 72, 600 ± 120, and 579 ± 20 Nmm respectively. The narrow constructs were statistically different from the other two (p<0.05), while the wide and metal constructs were not statistically different from each other (p=0.76). This work demonstrated that the torsional performance of the novel solution is comparable to metal fixators. As a measure of the functional range, the torsional stiffness in the AdhFix exceeded that of the metal plate. Furthermore, the wide patches were able to sustain a similar maximum toque as the metal plates. These results suggest AdhFix to be a viable, customizable alternative to metal implants for fracture fixation in the hand.
Odontoid fracture of the second cervical vertebra (C2) is the most common spinal fracture type in elderly patients. However, very little is known about the biomechanical fracture mechanisms, but could play a role in fracture prevention and treatment. This study aimed to investigate the biomechanical competence and fracture characteristics of the odontoid process. A total of 42 human C2 specimens (14 female and 28 male, 71.5 ± 6.5 years) were scanned via quantitative computed tomography, divided in 6 groups (n = 7) and subjected to combined quasi-static loading at a rate of 0.1 mm/s until fracturing at inclinations of −15°, 0° and 15° in sagittal plane, and −50° and 0° in transverse plane. Bone mineral density (BMD), specimen height, fusion state of the ossification centers, stiffness, yield load, ultimate load, and fracture type according to Anderson and d'Alonzo were assessed. While the lowest values for stiffness, yield, and ultimate load were observed at load inclination of 15° in sagittal plane, no statistically significant differences could be observed among the six groups (p = 0.235, p = 0.646, and p = 0.505, respectively). Evaluating specimens with only clearly distinguishable fusion of the ossification centers (n = 26) reveled even less differences among the groups for all mechanical parameters. BMD was positively correlated with yield load (R² = 0.350, p < 0.001), and ultimate load (R² = 0.955, p < 0.001), but not with stiffness (p = 0.070). Type III was the most common fracture type (23.5%). These biomechanical outcomes indicate that load direction plays a subordinate role in traumatic fractures of the odontoid process in contrast to BMD which is a strong determinant of stiffness and strength. Thus, odontoid fractures appear to result from an interaction between load magnitude and bone quality.
The lateral wall thickness (LWT) in trochanteric femoral fractures is a known predictive factor for postoperative fracture stability. Currently, the AO/OTA classification uses a patient non-specific measure to assess the absolute LWT (aLWT) and distinguish stable A1.3 from unstable A2.1 fractures based on a threshold of 20.5 mm. This approach potentially results in interpatient deviations due to different bone morphologies and consequently variations in fracture stability. Therefore, the aim of this study was to explore whether a patient-specific measure for assessment of the relative LWT (rLWT) results in a more precise threshold for prediction of unstable fractures. Part 1 of the study evaluated 146 pelvic radiographs to assess left-right symmetry with regard to caput-collum-angle (CCD) and total trochanteric thickness (TTT), and used the results to establish the rLWT measurement technique. Part 2 reevaluated 202 patients from a previous study cohort to analyze their rLWT versus aLWT for optimization purposes. Findings in Part 1 demonstrated a bilateral symmetry of the femur regarding both CCD and TTT (p ≥ 0.827) allowing to mirror bone's morphology and geometry from the contralateral intact to the fractured femur. Outcomes in Part 2 resulted in an increased accuracy for the new determined rLWT threshold (50.5%) versus the standard 20.5 mm aLWT threshold, with sensitivity of 83.7% versus 82.7% and specificity 81.3% versus 77.8%, respectively. The novel patient-specific rLWT measure can be based on the contralateral femur anatomy and is a more accurate predictor of a secondary lateral wall fracture in comparison to the conventional aLWT. This study established the threshold of 50.5% rLWT as a reference value for prediction of fracture stability and selection of an appropriate implant for fixation of trochanteric femoral fractures.
Screw fixation is an established method for anterior cruciate ligament (ACL) reconstruction, although with a high rate of implant-related complications. An allograft system for implant fixation in ACL reconstruction, the Shark Screw ACL (surgebright GmbH) could overcome some of the shortcomings of bioabsorbable screws, such as foreign body reaction, need for implant removal and imaging artefacts. However, it needs to provide sufficient mechanical stability. Therefore, the aim of this study was to investigate the biomechanical stability, especially graft slippage, of the novel allograft system versus a conventional bioabsorbable interference screw (BioComposite Interference Screw; Arthrex Inc.) for tibial implant fixation in ACL reconstruction. Twenty-four paired human proximal tibiae (3 female, 9 male, 72.7 ± 5.6 years) underwent ACL reconstruction. The quadrupled semitendinosus and gracilis tendon graft were fixed in one specimen of each pair using the allograft fixation system Shak Screw ACL and the contralateral one using an interference screw. All specimens were cyclically loaded at 1 Hz with peak load levels monotonically increased from 50 N at a rate of 0.1 N/cycle until catastrophic failure. Relative movements of the graft versus the tibia were captured with a stereographic optical motion tracking system (Aramis SRX; GOM GmbH). The two fixation methods did not demonstrate any statistical difference in ultimate load at graft slippage (p = 0.24) or estimated survival at slippage (p = 0.06). Both, the ultimate load and estimated survival until failure were higher in the interference screw (p = 0.04, and p = 0.018, respectively). Graft displacement at ultimate load reached values of up to 7.2 mm (interference screw) and 11.3 mm (Shark Screw ACL). The allograft screw for implant fixation in ACL reconstruction showed similar behavior in terms of graft slippage compared to the conventional metal interference screw but underperformed in terms of ultimate load. However, the ultimate load may not be considered a direct indicator of clinical failure.
Recently, a new suture was designed to minimize laxity in order to preserve consistent tissue approximation while improving footprint compression after tendon repair. The aims of this study were: (1) to compare the biomechanical competence of two different high strength sutures in terms of slippage and failure load, (2) to investigate the influence of both knots number and different media (air, saline and fat) on the holding capacity of the knots. Alternating surgical knots of two different high-strength sutures (group1: FibreWire; group2: DynaCord; n = 105) were tied on two roller bearings with 50N tightening force. Biomechanical testing was performed in each medium applying ramped monotonic tension to failure defined in terms of either knot slippage or suture rupture. For each group and medium, seven specimens with either 3, 4, 5, 6, or 7 knots each were tested, evaluating their knot slippage and ultimate load to failure. The minimum number of knots preventing slippage failure and thus resulting in suture rupture was determined in each group and medium, and taken as a criterium for better performance when comparing the groups. In each group and medium failure occurred via suture rupture in all specimens for the following minimum knot numbers: group1: air – 7, saline – 7, fat – 7; group2: air – 6; saline – 4; fat – 5. The direct comparison between the groups when using 7 knots demonstrated significantly larger slippage in group1 (6.5 ± 2.2 mm) versus group2 (3.5 ± 0.4 mm) in saline (p < 0.01) but not in the other media (p ≥0.52). Ultimate load was comparable between the two groups for all three media (p ≥ 0.06). The lower number of required knots providing sufficient repair stability, smaller slippage levels and identical suture strength, combined with the known laxity alleviation effect demonstrate advantages of DynaCord versus FibreWire.
Up to 30% of thoracolumbar (TL) fractures are missed in the emergency room. Failure to identify these fractures can result in neurological injuries up to 51% of the casesthis article aimed to clarify the incidence and risk factors of traumatic fractures in China. The China National Fracture Study (CNFS. Obtaining sagittal and anteroposterior radiographs of the TL spine are the first diagnostic step when suspecting a traumatic injury. In most cases, CT and/or MRI are needed to confirm the diagnosis. These are time and resource consuming. Thus, reliably detecting vertebral fractures in simple radiographic projections would have a significant impact. We aim to develop and validate a deep learning tool capable of detecting TL fractures on lateral radiographs of the spine. The clinical implementation of this tool is anticipated to reduce the rate of missed vertebral fractures in emergency rooms. We collected sagittal radiographs, CT and MRI scans of the TL spine of 362 patients exhibiting traumatic vertebral fractures. Cases were excluded when CT and/or MRI where not available. The reference standard was set by an expert group of three spine surgeons who conjointly annotated (fracture/no-fracture and AO Classification) the sagittal radiographs of 171 cases. CT and/or MRI were used confirm the presence and type of the fracture in all cases. 302 cropped vertebral images were labelled “fracture” and 328 “no fracture”. After augmentation, this dataset was then used to train, validate, and test deep learning classifiers based on the ResNet18 and VGG16 architectures. To ensure that the model's prediction was based on the correct identification of the fracture zone, an Activation Map analysis was conducted.Introduction and Objective
Materials and Methods
Osteosynthesis of high-energy metaphyseal proximal tibia fractures is still challenging, especially in patients with severe soft tissue injuries and/or short stature. Although the use of external fixators is the traditional treatment of choice for open comminuted fractures, patients' acceptance is low due to the high profile and therefore the physical burden of the devices. Recently, clinical case reports have shown that supercutaneous locked plating used as definite external fixation could be an efficient alternative. Therefore, the aim of this study was to evaluate the effect of implant configuration on stability and interfragmentary motions of unstable proximal tibia fractures fixed by means of externalized locked plating. Based on a right tibia CT scan of a 48 years-old male donor, a finite element model of an unstable proximal tibia fracture was developed to compare the stability of one internal and two different externalized plate fixations. A 2-cm osteotomy gap, located 5 cm distally to the articular surface and replicating an AO/OTA 41-C2.2 fracture, was virtually fixed with a medial stainless steel LISS-DF plate. Three implant configurations (IC) with different plate elevations were modelled and virtually tested biomechanically: IC-1 with 2-mm elevation (internal locked plate fixation), IC-2 with 22-mm elevation (externalized locked plate fixation with thin soft tissue simulation) and IC-3 with 32-mm elevation (externalized locked plate fixation with thick soft tissue simulation). Axial loads of 25 kg (partial weightbearing) and 80 kg (full weightbearing) were applied to the proximal tibia end and distributed at a ratio of 80%/20% on the medial/lateral condyles. A hinge joint was simulated at the distal end of the tibia. Parameters of interest were construct stiffness, as well as interfragmentary motion and longitudinal strain at the most lateral aspect of the fracture. Construct stiffness was 655 N/mm (IC-1), 197 N/mm (IC-2) and 128 N/mm (IC-3). Interfragmentary motions under partial weightbearing were 0.31 mm (IC-1), 1.09 mm (IC-2) and 1.74 mm (IC-3), whereas under full weightbearing they were 0.97 mm (IC-1), 3.50 mm (IC-2) and 5.56 mm (IC-3). The corresponding longitudinal strains at the fracture site under partial weightbearing were 1.55% (IC-1), 5.45% (IC-2) and 8.70% (IC-3). From virtual biomechanics point of view, externalized locked plating of unstable proximal tibia fractures with simulated thin and thick soft tissue environment seems to ensure favorable conditions for callus formation with longitudinal strains at the fracture site not exceeding 10%, thus providing appropriate relative stability for secondary bone healing under partial weightbearing during the early postoperative phase.