Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 68 - 68
1 Nov 2018
Tsai T Lian W Wang F Ko J
Full Access

Subacromial bursa fibrosis are linked to rotator cuff lesion with shoulder stiffness; however, the mechanism underlying this shoulder disorder remain elusive. MicroRNA-29s (miR-29s) are emerging fibrosis inhibitor targeting fibrogenic matrices during tissue fibrosis. This study is aimed to investigate clinical relevance and function of miR-29 signalling to subacromial bursa homeostasis in shoulder stiffness. Subacromial bursa in patients with rotator cuff lesion with or without shoulder stiffness who required open acromioplasty were harvested for assessing fibrosis histopathology using Manson's trichrome staining. Expressions of proinflammatory cytokines, fibrotic matrices, and miR-29s were quantified using RT-PCR and in situ hybridization. Range of motion and pain scores of the stiffness group were higher than those of non-stiffness group. Upregulated proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and fibrotic matrices (collagen 1α1, 3α1, and 4α1) but decreased miR-29a and b expression existed in the stiffness group. Affected tissues exhibited severe fibrotic matrix accumulation, synovial hyperangiogenesis, hyperplasia, and strong miR-29a transcripts. In vitro, IL-1β rather than IL-6 and TNF-α decreased miR-29a expression of subacromial bursa fibroblasts. miR-29a knockdown escalated fibrotic matrix expression, whereas forced miR-29a expression alleviated the IL-1β-induced fibrotic matrix expression. Of interest, miR-29a transgenic mice displayed moderate responses to supraspinatus and infraspinatus tenotomy-induce fibrosis and gait irregularity of affected shoulders. Weak miR-29 signalling causes excessive fibrosis and remodelling in subacromial bursa and ultimately increases the prevalence of shoulder stiffness. This study reveals a new mechanistic underlying shoulder stiffness and highlights that sustained miR-29a potentially ameliorates the severity and function of stiff shoulder.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 124 - 124
1 Feb 2017
Li G Dimitriou D Tsai T Park K Kwon Y Freiberg A Rubash H
Full Access

Introduction

An equal knee joint height during flexion and extension is of critical importance in optimizing soft-tissue balancing following total knee arthroplasty (TKA). However, there is a paucity of data regarding the in-vivo knee joint height behavior. This study evaluated in-vivo heights and anterior-posterior (AP) translations of the medial and lateral femoral condyles before and after a cruciate-retaining (CR)-TKA using two flexion axes: surgical transepicondylar axis (sTEA) and geometric center axis (GCA).

Methods

Eleven patient with advanced medial knee osteoarthritis (age: 51–73 years) who scheduled for a CR TKA and 9 knees from 8 healthy subjects (age: 23–49 years) were recruited. 3D models of the tibia and femur were created from their MR images. Dual fluoroscopic images of each knee were acquired during a weight-bearing single leg lunge. The OA knee was imaged again one year after surgery using the fluoroscopy during the same weight-bearing single leg lunge. The in vivo positions of the knee along the flexion path were determined using a 2D/3D matching technique. The GCA and sTEA were determined based on existing methods. Besides the anterior-posterior translation, the femoral condyle heights were determined using the distances from the medial and lateral epicondyle centers on the sTEA and GCA to the tibial plateau surface in coronal plane (Fig. 1). The paired t-test was applied to compare the medial and lateral condyle motion within each group (Healthy, OA, and CR-TKA). Two-way ANOVA followed post hoc Newman–Keuls test was adopted to detect significant differences among the groups. p<0.05 was considered significant.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 22 - 22
1 Oct 2014
Li G Tsai T Dimitriou D Kwon Y
Full Access

Combined acetabular and femoral anteversion (CA) of the hip following total hip arthroplasty (THA) is critical to the hip function and longevity of the components. However, no study has been reported on the accuracy in restoration of CA of the hip after operation using robotic assistance and conventional free-hand techniques. The purpose of this study was to evaluate if using robotic assistance in THA can better restore native CA than a free-hand technique.

Twenty three unilateral THA patients participated in this study. Twelve of them underwent a robotic-arm assisted THA (RIO® Robotic Arm Interactive Orthopedic System, Stryker Mako., Fort Lauderdale, FL, USA) and eleven received a free-hand THA. Subject specific 3D models of both implanted and non-implanted hips were reconstructed using post-operative CT scans. The anteversion and inclination of the native acetabulum and implanted cup were measured and compared. To determine the differences of the femoral anteversion between sides, the non-implanted native femur was mirrored and aligned with the remaining femur of the implanted side using an iterative closest point algorithm. The angle between the native femoral neck axis and the prosthesis neck axis in transverse plane was measured as the change in femoral anteversion following THA. The sum of the changes of the acetabular and femoral anteversion was defined as the change of CA after THA. A Wilcoxon signed rank test was performed to test if the anteversion of the navigation and free-hand THAs were different from the contralateral native hips (α = 0.05).

The acetabular anteversion were 22.0°±7.4°, 35.9°±6.5° and 32.6°±22.6° for the native hips, robotic assisted THAs and free-hand THAs, respectively, and the corresponding values of the acetabular inclinations were 52.0°±2.9°, 35.4°±4.4° and 43.1°±7.1°. The acetabular anteversion was increased by 12.2°±11.1° (p=0.005) and 12.5°±20.0° (p=0.102) for the robotic assisted and the free-hand THAs. The femoral anteversion was increased by 6.3°±10.5° (p=0.077) and 11.0°±13.4° (p=0.014) for the robotic assisted and free-hand THAs, respectively. The CA were significantly increased by 18.5°±11.7° (p<0.001) and 23.5°±26.5° (p=0.019) for the robotic assisted and the free-hand THAs. The changes of the CA of the free-hand THAs varied in a larger range than those of the robotic assisted THAs.

This study is the first to evaluate the changes in acetabular and femoral anteversions of the hips after robotic assisted and free-hand THAs using the contralateral native hip as a control. The results demonstrate that both the navigation and free-hand THAs significantly increased the CA compared to the contralateral native hips, but the changes of the robotic assisted THAs (18.5°±11.7°) were smaller and varied less than those of the free-hand THAs (23.5°±26.5°). These data suggest that the robotic assisted THA can better restore the native hip CAs with higher repeatability than the free-hand technique. Further studies are needed to investigate the effects of the hip anteversion changes on the in-vivo function of the hip and the long-term outcomes in THA patients.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 250 - 250
1 Nov 2002
Yang C Tsai T Lai K
Full Access

This retrospective study compared the perioperative morbidity of two consecutive groups of patients having primary total knee arthroplasty thru subvastus approach and conventional medial parapatellar approach.

The arthroplasties were performed in consecutive cases of the subvastus group(SV) (21 TKAs in 21 patients) from Dec. 1999 to May 2000 using a subvastus approach and in the control group(CY) of same operator(Y) (26 TKAs in 26 patients) from May 1999 to Nov. 1999 using medial parapatellar approach, and in the second control group(CB) (24 TKAs in 24 patients) from May 1999 to May 2000 using medial parapatellar approach by another operator (L).

The patient perioperative morbidities were evaluated including blood loss, blood transfusion, lateral release, pain condition, time to ROM 90 degrees, skin complication, admission days.

The subvastus group showed less time to gain 90-ROM(6.09, 6.8, 7.85), and less hospitalization days(10.43, 11.3, 12.15). But the SV group also showed higher rate of lateral release(13%, 8%, 12%) and skin complication(9%). Although the difference is not statistically significant.

The authors concluded that the subvastus approach led to early ROM rehabilitation and discharge.