header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 28 - 28
1 Jun 2012
Chaloupka R Tomaskova I
Full Access

Introduction

Postural and motor activities are the results of interactions of smaller inhibitory and larger facilitating structures of the central nervous system (CNS). In the case of dysbalance of inhibitory and facilitating structures during CNS evolution, the asymmetry of postural activities can appear. This asymmetry remains hidden in the early periods of evolution and becomes apparent in the periods of quick growth and increased hormonal and metabolic activities. Genetic and neural factors have proven to be significant in the cause of idiopathic scoliosis (IS), so we propose a neural developmental hypothesis of this disease.

Methods

We evaluated a cohort of 19 patients, all of whom were girls with a mean age of 14·7 years (range 13–18) with right idiopathic thoracic curve (mean Cobb angle 53·5°, range 37–72°; of the apical vertebra from T7 to T9). Heart and pulmonary functions were evaluated by heart ECHO and spiroergometry.