Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 32 - 32
22 Nov 2024
Granata V Strina D Possetti V Leone R Valentino S Chiappetta K Bottazzi B Mantovani A Loppini M Asselta R Sobacchi C Inforzato A
Full Access

Aim

Periprosthetic joint infection (PJI) is one of the most serious and frequent complications in prosthetic surgery. Despite significant improvements in the criteria for diagnosis of PJI, the diagnostic workflow remains complex and, sometimes, inconclusive. Host immune factors hold great potential as diagnostic biomarkers in bone and joint infections. We have recently reported that the synovial concentration of the humoral pattern recognition molecule long pentraxin 3 (PTX3) is a sensitive and specific marker of PJI in total hip and knee arthroplasty patients (THA and TKA) undergoing revision surgery [1]. However, the contribution to risk and diagnosis of PJI of the genetic variation in PTX3 and inflammatory genes that are known to affect its expression (IL-1b, IL-6, IL-10, and IL-17A) has not been addressed. Therefore, we assessed these relationships in a cohort of THA and TKA patients who underwent prosthesis revision by focusing on a panel of single nucleotide polymorphisms (SNPs) in the PTX3, IL-1β, IL-6, IL-10 and IL-17A genes.

Method

A case-control retrospective study was conducted on an historic cohort of patients that received THA or TKA revision and were diagnosed with PJI (cases) or aseptic complications (controls) [1]. Samples of saliva were collected from 93 subjects and used for extraction of genomic DNA to perform genotyping of the PTX3, IL-1β, IL-6, IL-10 and IL-17A polymorphisms. Moreover, whenever available, samples of synovial fluid and plasma [1] were used to measure the concentration of the IL-1β, IL-10, and IL-6 proteins by immunoassay. Uni-and multivariate analyses were performed to evaluate the relationships between genetic, biochemical, and clinical variables.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 25 - 25
24 Nov 2023
Parente R Possetti V Granata V Schiavone ML Strina D Davi F Menale C Palagano E Filipović M Grčević D Bottazzi B Mantovani A Sobacchi C Inforzato A
Full Access

Aim

Osteomyelitis (OM) is a debilitating infection of the bone that originates from hematogenous spreading of microbes or contamination after surgery/fracture. OM is mainly caused by the opportunistic bacterium Staphylococcus aureus (SA), which can evade the host immune response, acquire antibiotic resistance and chronically colonize the musculoskeletal tissue 1,2, yet the underlying molecular and cellular processes are largely unclear. This study aimed to characterize the pathogenetic mechanisms of SA-OM with a focus on the long pentraxin 3 (PTX3), a soluble pattern recognition molecule and bone tissue component that is emerging as a new player in osteoimmunology 3 and a diagnostic marker of periprosthetic joint infections, a common form of OM4.

Method

A murine model of OM based on intra-bone injection of SA was developed that closely mimicked surgery/trauma-related OM in humans and allowed addressing the role of PTX3 in gene-modified (Ptx3-/-) animals. Local and systemic infection and inflammation were assessed via microbiology, flow cytometry, histochemistry and microCT techniques.