The optimal bearing for hip arthroplasty is still a matter of debate. in younger and more active patients ceramic-on-polyethylene (CoP) bearings are frequently chosen over metal-on-polyethylene (MoP) bearings to reduce wear and increase biocompatibility. However, the fracture risk of ceramic heads is higher than that of metal heads. This can cause serious issue, as ceramic fractures pose a serious complication often necessitating major revision surgery – a complication more frequently seen in ceramic-on-ceramic bearings. To date, there are no long-term data (> 20 years of follow-up) reporting fracture rates of the ceramic femoral heads in CoP bearings. We retrospectively evaluated the clinical and radiographic results of 348 cementless THAs treated with 2nd generation Biolox® Al2O3 Ceramic-on-Polyethylene (CoP) bearings, which had been consecutively implanted between January 1985 and December 1989. At implantation the mean patient age was 57 years. The cohort was subsequently followed for a minimum of 20 years. At the final follow-up 111 patients had died, and 5 were lost to follow-up (Fig. 1). A Kaplan-Meier survivorship analysis was used to estimate the cumulative incidence of ceramic head fractures over the long-term.Introduction
Patients and Methods
Corrosion in modular taper connections of total joint replacement has become a hot topic in the orthopaedic community and failures of modular systems have been reported. The objective of the present study was to determine in vivo titanium ion levels following cementless total hip arthroplasty (THA) using a modular neck system. A consecutive series of 173 patients who underwent cementless modular neck THA and a ceramic on polyethylene bearing was evaluated retrospectively. According to a standardized protocol, titanium ion measurements were performed on 67 patients using high-resolution inductively coupled plasma-mass spectrometry. Ion levels were compared to a control group comprising patients with non-modular titanium implants and to individuals without implants. Although there was a higher range, modular-neck THA (unilateral THA: 3.0 μg/L (0.8–21.0); bilateral THA: 6.0 μg/L (2.0–20.0)) did not result in significant elevated titanium ion levels compared to non-modular THA (unilateral THA: 2.7 μg/L (1.1–7.0), p = 0.821; bilateral THA: 6.2 μg/L, (2.3–8.0), p = 0.638). In the modular-neck THA group, patients with bilateral implants had significantly higher titanium ion levels than patients with an unilateral implant (p < 0.001). Compared to healthy controls (0.9 μg/L (0.1–4.5)), both modular THA (unilateral: p = 0.029; bilateral p = 0.003) and non-modular THA (unilateral: p < 0.001; bilateral: p < 0.001) showed elevated titanium ion levels. The data suggest that the present modular stem system does not result in elevated systemic titanium ion levels in the medium term when compared to non-modular stems. However, more outliner were seen in modular-neck THA. Further longitudinal studies are needed to evaluate the use of systemic titanium ion levels as an objective diagnostic tool to identify THA failure and to monitor patients following revision surgery.
Total Hip Arthroplasty (THA) in patients after proximal femoral osteotomy remains a major challenge. Inferior survival for both cementless and cemented THA has been reported in this subgroup of patients. We retrospectively evaluated the clinical and radiographic results of a consecutive series of 48 THAs (45 Patients) who had undergone conversion THA for failed intertrochanteric osteotomy after a mean of 12 years (2–33 years) using a cementless, grit-blasted, double-tapered femoral stem. Mean follow-up was 20 years (range, 15–25 years), mean age at surgery was 47 years (range, 13–55 years). Clinical results were evaluated using the Harris Hip Score. Kaplan-Meier survivorship analysis was performed to determine long-term outcomes for different end points.Introduction
Methods
In pre-operative planning for total hip arthroplasty (THA), femoral offset (FO) is frequently underestimated on AP pelvis radiographs as a result of inaccurate patient positioning, imprecise magnification, and radiographic beam divergence. The aim of the present study was to evaluate the reliability and accuracy of predicting three-dimensional (3-D) FO as measured on computed tomography (CT) from measurements performed on standardised AP pelvis radiographs. In a retrospective cohort study, pre-operative AP pelvis radiographs and corresponding CT scans of a consecutive series of 345 patients (345 hips, 146 males, 199 females, mean age 60 (range: 40-79) years, mean body-mass-index 27 (range: 29-57) kg/m2) with primary end-stage hip osteoarthritis were reviewed. Patients were positioned according to a standardised protocol and all images were calibrated. Using validated custom programmes, FO was measured on corresponding AP pelvis radiographs and CT scans. Inter- and intra-observer reliability of the measurement methods were evaluated using intra-class correlation coefficients (ICC). To predict 3-D FO from AP pelvis measurements, the entire cohort was randomly split in two groups and gender specific linear regression equations were derived from a subgroup of 250 patients (group A). The accuracy of the derived prediction equations was subsequently assessed in a second subgroup of 100 patients (group B). In the entire cohort, mean FO was 39.2mm (95%CI: 38.5-40.0mm) on AP pelvis radiographs and 44.6mm (95%CI: 44.0-45.2mm) on CT scans. FO was underestimated by 14% on AP pelvis radiographs compared to CT (5.4mm, 95%CI: 4.8-6.0mm, p<0.001) and both parameters demonstrated a linear correlation (r=0.642, p<0.001). In group B, we observed no significant difference between gender specific predicted FO (males: 48.0mm, 95%CI: 47.1-48.8mm; females: 42.0mm, 95%CI: 41.1-42.8mm) and FO as measured on CT (males: 47.7mm, 95%CI: 46.1-49.4mm, p=0.689; females: 41.6mm, 95%CI: 40.3-43.0mm, p=0.607). The results of the present study suggest that femoral offset can be accurately and reliably predicted from AP pelvis radiographs in patients with primary end-stage hip osteoarthritis. Our findings support the surgeon in pre-operative templating and may improve offset and limb length restoration in THA without the routine performance of CT.