The aim of this study was to identify the effect of COVID-19 lockdown on the rates, types, mechanisms and mortality of musculoskeletal trauma across Scotland. Data for all musculoskeletal trauma requiring operative treatment was collected prospectively from five orthopaedic units across Scotland during the initial lockdown period (23/03/2020-28/05/2020). This was compared with data for the same timeframe in 2018 and 2019. Data collected included all cases requiring surgery, injury type, mechanism of injury, and inpatient mortality. 1315 patients received operative treatment in 2020 compared to 1791 in 2019 and 1719 in 2018. The numbers of all injury types decreased, but the relative frequency of hip fractures increased(36.3% 2020 vs 30.2% 2019, p<0.0001 & 30.7% 2018, p<0.0001). Significant increases were seen in proportion of DIY-related injuries(3.1% 2020 vs 1.7% 2019, p=0.01 & 1.6% 2018, p<0.01) and injuries caused by falls(65.6% 2020 vs 62.6% 2019, p=0.08 & 61.9% 2018, p=0.05). Significant decreases were seen in proportion of RTCs(2.6% 2020 vs 5.4% 2019, p<0.0001 & 4.2% 2018, p=0.02) and occupational injuries(1.8% 2020 vs 3.0% 2019, p=0.03 & 2.3% 2018, p=0.01). A significant increase in proportion of self-harm injuries was seen(1.7% 2020 vs 1.1% 2019, p=0.19 & 0.5% 2018, p<0.0001). Mortality of trauma patients was significantly higher in 2020 (4.9%), than in 2019 (3.2%, p=0.02) and 2018 (2.6%, p<0.0001). In conclusion, lockdown has resulted in a marked reduction of musculoskeletal trauma requiring surgery in Scotland. There have been major changes in types and mechanisms of injury, and mortality of trauma patients has risen significantly.
The UK government declared a national lockdown on 23 March 2020 to reduce transmission of COVID-19. This study aims to identify the effect of lockdown on the rates, types, mechanisms, and mortality of musculoskeletal trauma across Scotland. Data for all musculoskeletal trauma requiring operative treatment were collected prospectively from five key orthopaedic units across Scotland during lockdown (23 March 2020 to 28 May 2020). This was compared with data for the same timeframe in 2019 and 2018. Data collected included all cases requiring surgery, injury type, mechanism of injury, and inpatient mortality.Aims
Methods
Atypical femoral fractures (AFFs) are reported in patients taking bisphosphonates (BPs). This study aims to describe demographics, potential risk factors and outcome of fixation in AFFs. Forty-three patients with AFF were identified retrospectivity from all identified patients with subtrochanteric or diaphyseal fractures within NHS Grampian between 2008–2018. Patients were identified via hospital coding and electronic search of patients undergoing femoral fixation. AFFs were diagnosed by the 2014 American Society of Mineral and Bone Research diagnostic criteria by electronic patient record review by two investigators. Within this cohort, the incidence of AFF was 8.25% with male to female ratio of 10:1 and a mean of presentation age 73.3 years. 27.9% of AFFs occurred in the diaphysis. 22% of AFFs were bilateral. Mean follow-up was 11.5 months. 87.5% of patients had documented prodromal symptoms. 35% had proven radiological changes before fracture. All patients identified were on BPs. Duration of BPs before fracture was 5 months- 13.2 years (mean 6.3 years). Concurrent use of BPs with steroid and proton pump inhibitors was seen in 58.5%. All patients had intramedullary fixation with 8 (18.6%) requiring revision for non-union. For those that united radiologically it took on average 304 days (220–513). BPs were only stopped in 45% of patients after fixation. AFFs in this cohort appear to be associated with BP use, female sex, clinical and radiological prodrome. AFF remain a difficult clinical problem with a high revision rate. Further work is required to identify the temporal relationships and to raise awareness to improve surveillance/management.
Magnetic resonance imaging (MRI) validation of a novel method of assessing Distal Radial Fracture (DRF) reduction using the hypothesised constant relationship between the dorsal radial cortex (DC) and the superior pole of the lunate (SL). MRI scans of 28 normal wrists were examined. Scans included the distal third of the radius to the proximal carpal row. Beginning 5cm proximal to the distal radius articular surface, a line was superimposed upon the DC extending distally through the metaphyseal flare. Lunate height (LH) and distance from the DC line to the SL (DC-SL) were measured at 5-degree rotational increments around the radial shaft central axis to a total of 30 degrees of supination and pronation (S+P). The DC-SL/LH ratio was compared to 0 degrees (anatomical lateral) using the two-tailed paired student t-test. There was no significant difference in DC-SL:LH between 0 degrees of rotation and any 5-degree increment up to 30 degrees of S+P (lowest p=0.075). The DC line lay consistently dorsal to the SL. A constant DC-SL relationship exists with up to 30 degrees of S+P. This reference can be quickly and accurately used to assess DRF reduction in poorly-taken films with malrotation up to 30 degrees from anatomical lateral. Research comparing DC-SL distance with volar tilt to assess DRF reduction is needed.