Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 284 - 284
1 Sep 2012
Wendlandt R Schrader S Schulz A Spuck S Jürgens C Tronnier V
Full Access

Introduction

The degeneration of the adjacent segment in lumbar spine with spondylodesis is well known, though the exact incidence and the mechanism is not clear. Several implants with semi rigid or dynamic behavior are available to reduce the biomechanical loads and to prevent an adjacent segment disease (ASD). Randomized controlled trials are not published. We investigated the biomechanical influence of dynamic and semi rigid implants on the adjacent segment in cadaver lumbar spine with monosegmental fusion (MF).

Materials and Methods

14 fresh cadaver lumbar spines were prepared; capsules and ligaments were kept intact. Pure rotanional moments of ±7.5 Nm were applied with a Zwick 1456 universal testing machine without preload in lateral bending and flexion/extension. The intradiscal pressure (IDP) and the range of motion (ROM) were measured in the segments L2/3 and L3/4 in following situations: in the native spine, monosegmental fusion L4/5 (MF), MF with dynamic rod to L3/4 (Dynabolt), MF with interspinous implant L3/4 (Coflex), and semi rigid fusion with PEEK rod (CD Horizon Legacy) L3-L5.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 98 - 99
1 May 2011
Gang F Wendlandt R Spuck S Schulz A Juergens C
Full Access

Introduction: The rotational fiexibility of the occipito-atlanto-axial complex is infiuenced by several ligaments, capsules and the alarian ligament (AL). For the development of a biomechanical model simulating dens fractures and stabilization techniques, we investigate the rotational range of motion of the atlantodental joint reducing sequentially the infiuence of capsules and additional ligaments in two different groups (segments C0–C2 and segments C1–C2). The torque affecting the dens axis was analyzed.

Methods: 7 fresh C0–C2 + 7 fresh C1–C2 cadaver segments with the integrity of all ligaments and joint capsules were mounted on a custom made rotational testing device (RTD) of a universal mechanical testing machine (UTM). Pure axial torque with a rotational speed of 5°/s was applied clockwise and counter-clockwise. To acquire the physiological range of motion (ROM) between C1 and C2, a maximal axial torque of ±1.5Nm was applied. Consecutively, all the ligaments which do not attach to the odontoid were transected and the ligaments which attach to or contact with the odontoid were preserved. The previously recorded rotation was applied to the specimens with the RTD. The torque between C1 and C2 was recorded.

Results: The group C0–C2 had a mean unidirectional ROM of 23.45° at 0.3Nm and of 32.87° at 1.5Nm respectively. The group C1–C2 had a larger ROM of 27.41° at 0.3Nm and of 35.47° at 1.5Nm. After resection of ligaments the torque in Group C0–C2 was reduced by 38% (0.3 Nm) and 61% (1.5Nm) respectively. The group C1–C2 showed a higher reduction of the transmitted torque: 90% (0.3Nm) and 80% (1.5Nm) respectively.

Discussion: Evaluating the direct torque forces on the atlantodental joint, we sequentially cut the ligamentous junction of the C1–C2 complex. ROM measurements at 0.3 Nm correlate well to previous data. Measurements in the group with cut AL (C1–C2) had an increased ROM. Comparing the reduction of the transmitted torque between the two groups, 90% (0.3Nm) and 80% (1.5Nm) in group C1–C2 in contrast to only 38% (0.3Nm) and 61% (1.5Nm) in group C0–C2, the rotationally stabilizing meaning of the AL in the occipito-atlantodental complex is punctuated. Higher torques (1.5Nm) increased the reduction of the transmitted torque in group C0–C2 between the measurements with intact and with cut ligaments. We hypothesize that the torque acting on the atlantodental joint is dominated by the AL at smaller angles and has to be considered in the evaluation of upper cervical models. In higher angles the torque is predominately determined by the capsules. Transferring the data to a model simulating the torque on the dens, a clear distinction has to be made based upon the region of the ROM. For larger angles at the borders of the ROM, the infiuence of the facet joint capsules cannot be neglected.