Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 26 - 26
1 Apr 2013
Steiner M Claes L Simon U Ignatius A Wehner T
Full Access

Secondary fracture healing processes are strongly influenced by interfragmentary motion. Shear movement is assumed to be more critical than axial movement, however experimental results are controversial. Numerical fracture healing models allow to simulate the fracture healing process with variation of single input parameters and under comparable normalized mechanical conditions. Therefore, a direct comparison of different in vivo scenarios is possible. The aim of this study was to simulate fracture healing under several axial and shear movement scenarios and compare their respective time to heal. We hypothesize that shear movement is always more critical than axial loading. For the presented study, we used a corroborated numerical model for fracture healing in sheep. Numerous variations of the movement amplitude, the fracture gap size and the musculoskeletal loads were simulated for comparable axial compressive and shear load cases. In all simulated cases, axial compressive load had less inhibitory influences on the healing process than shear load. Therefore, shear loading is more critical for the fracture healing outcome in general. Thus, our findings suggest osteosynthesis implants to be optimized to limit shear movements under musculoskeletal loading.